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A synaptic trek to autism
Thomas Bourgeron1,2
Autism spectrum disorders (ASD) are diagnosed on the basis

of three behavioral features namely deficits in social

communication, absence or delay in language, and

stereotypy. The susceptibility genes to ASD remain largely

unknown, but two major pathways are emerging. Mutations in

TSC1/TSC2, NF1, or PTEN activate the mTOR/PI3K pathway

and lead to syndromic ASD with tuberous sclerosis,

neurofibromatosis, or macrocephaly. Mutations in NLGN3/4,

SHANK3, or NRXN1 alter synaptic function and lead to mental

retardation, typical autism, or Asperger syndrome. The mTOR/

PI3K pathway is associated with abnormal cellular/synaptic

growth rate, whereas the NRXN–NLGN–SHANK pathway is

associated with synaptogenesis and imbalance between

excitatory and inhibitory currents. Taken together, these data

strongly suggest that abnormal synaptic homeostasis

represent a risk factor to ASD.
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Introduction
Autism affects about 0.7% of children and is characterized

by deficits in social communication, absence or delay in

language, and stereotyped and repetitive behaviors.

Beyond this unifying definition, lies a spectrum of dis-

orders/conditions, ranging from severe impairments to

mild personality traits. Autism spectrum disorders

(ASD) are diagnosed before three years of age, a period

characterized by intense synaptogenesis in the human

brain [1]. This review reports recent genetic and neuro-

biological findings that highlight two routes leading to

ASD: abnormal cellular/synaptic growth and imbalance

between inhibitory and excitatory synaptic currents.

Abnormal cellular/synaptic growth in ASD
The hypothesis that abnormal cellular/synaptic growth

may increase the risk of having ASD, was first suggested
www.sciencedirect.com
by the recurrent observation of macrocephaly in 10–30%

of the patients with ASD [2–4]. The head circumference

may be normal at birth, but during the first four years of

life, an overgrowth of the brain is observed [5,6]. The

nature of the macrocephaly — too many neurons, glial

cells, synapses, or larger cells — remains difficult to estab-

lish. However, studies on neurofibromatosis, tuberous

sclerosis, and Cowden/Lhermitte–Duclos syndromes

have provided interesting information on the link be-

tween abnormal growth rate and ASD [7]. These genetic

syndromes associate both susceptibility to ASD and

macrocephaly and are caused by mutations in the tumor

suppressor genes NF1, TSC1/TSC2, and PTEN [7]. In

tuberous sclerosis, mutations of TSC1/TSC2 induce cor-

tical developmental malformations called tubers. These

tubers were originally thought to be the cause of ASD

when their locations in the brain were overlapping areas

important for social communication and language. How-

ever, studies in mice showing that loss of Tsc1/Tsc2 or Pten
results in neuronal hypertrophy have led to the hypoth-

esis that susceptibility to ASD was not because of the

tubers, but to an abnormal shape and size of the neurons

[8�,9].

Interestingly, NF1, TSC1/TSC2, and PTEN act in a

common pathway as negative effectors of the rapamy-

cin-sensitive mTOR–raptor complex (mTORC1), a

major regulator of cellular growth in mitotic cells [10].

Mutations are predicted to enhance the mTORC1 com-

plex, a signal activated by a sequential kinase cascade

downstream of phosphoinositide-3 kinase (PI3K) path-

way. This pathway may also be modulated by serotonin

since macrocephaly and abnormal behaviors are exacer-

bated in mice with both Pten and serotonin transporter

mutations [11]. A stimulating hypothesis proposed by

Kelleher and Bear, suggests that the increase of the

mTOR pathway could lead to abnormal synaptic function

owing to an excess of protein synthesis at the synapse

[10].

Abnormal balance between inhibitory and
excitatory currents in ASD
The possibility that alteration of synaptic functions could

lead to ASD was first indicated by the phenotypic overlap

between autism, fragile X syndrome, and Rett syndrome

[12,13]. In addition, the key role of the excitatory/inhibi-

tory currents in ASD was further supported by the obser-

vation that 10–30% of patients with ASD have epilepsy

[14]. The synaptic hypothesis was confirmed by the

identification of mutations affecting the postsynaptic cell

adhesion molecules Neuroligins (NLGN) in individuals

with ASD [15��,16]. At the functional level, the mutations
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Figure 1

Schematic representation of the different phases of synaptogenesis in the human brain. During the first three years of life, an excess of cell/synaptic

growth rate and inhibitory currents could increase the risk of ASD. Mutations within the mTOR/PI3K pathway lead to an excess of synaptic/cell growth.

Mutations within the NRXN–NLGN–SHANK pathway lead to abnormal synaptogenesis and excess of inhibitory currents. The arrows entering the red

zone illustrate the excess of synaptic/cell growth and inhibitory currents during early brain development.
were found to alter the property of the NLGN to trigger

synapse formation in cultured neuronal cells [17]. NLGN

mutations probably concern a limited number of cases

(<1% of the individuals), but following these initial

results, mutations in other synaptic proteins such as

SHANK3, NRXN1, CNTNAP2, CNTN3/4, and PCDH9/
10 were identified in patients with ASD [18–25]. Inter-

estingly, NRXN1 codes for the presynaptic binding part-

ner of NLGNs, CNTNAP2 (Caspr2) possess strong

homology to NRXN and SHANK3 is a scaffolding protein

of the postsynaptic density that binds to NLGN and

regulates the size and shape of dendritic spines [26].

Only limited data are available for understanding the role

of these proteins in the human brain, but studies using

neuronal cell culture and animal models have provided

crucial information. Firstly, NLGNs and NRXNs

enhance synapse formation in vitro [27��], but are not

required for the generation of synapses in vivo [28��].
Therefore, NLGNs may not establish synapses, but may

contribute to the activity-dependent formation of neural

circuits [29�]. Secondly, NLGNs and NRXNs are emer-

ging as central organizing molecules for excitatory gluta-

matergic and inhibitory GABAergic synapses in the

mammalian brain [30,31]. The mutant mice carrying a

R451C Nlgn3 mutation identified in two brothers with

ASD displays an increased number of GABAergic

synapses and inhibitory currents [32]. An imbalance of

inhibition and excitation was also observed in MeCP2
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knockout [33] and in several mice proposed as model of

autism such as the Caps2 knockout [34] or mice subject to

prenatal valproate treatment [35]. Interestingly, the link

between GABA function and spine pruning has been

identified during a critical period of brain development

when individual experience is essential for the normal

development of the neuronal network [36]. Therefore,

impaired inhibitory–excitatory balance can be manifest as

a shifted critical period for brain development [37] or an

alteration of sensory processing, such as reduced gamma

oscillations in FMRP knockout mice [38] as seen also in

ASD [39]. Taken together, these results strongly suggest

that synapse homeostasis and specificity play an import-

ant role in the susceptibility to ASD.

Atypical neuronal networks in ASD
In the human cerebral cortex, the first synapses are

evident at the 40th day after conception. Thereafter,

the rate of synapse formation and pruning exhibit distinct

phases, the most dramatic change takes place during the

perinatal period (Figure 1). During the first three years of

life, synaptic contacts are formed, but only some will be

stabilized. This selection process represents a key step in

the cognitive development of the child. The NLGN–
NRXN–SHANK pathway is probably required during

this stabilization phase of the synapse in response to

neuronal activity. Strikingly, the role of the NLGN–
NRXN–SHANK pathway in the development of social

interaction seems to be conserved in other species.
www.sciencedirect.com
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Indeed, knockout mice for Nlgn4 display reduced social

interactions and ultrasonic vocalizations (USV) at the

adult stage [40��]. Mice carrying the R451C mutation

in Nlgn3 display normal [41] to reduced social interaction

[32] at the adult stage and a reduction of isolation calls in

pups [41]. However, knockout Nlgn4 and mutant knockin

Nlgn3 display normal to enhanced learning when com-

pared with wild-type mice [32,40��]. The same is true for

the mice carrying a null mutation of Shank1, which

exhibits increased anxiety-related behavior, but show

enhanced spatial learning [42].

One of the main challenges for basic scientists and

clinicians is to understand how far abnormal cell/synaptic

growth and synaptic function could be reversed. Remark-

ably, in mice with Tsc1/Tsc2 or Pten mutations, the use of

rapamycin, a specific inhibitor of mTORC1, can prevent

and reverse neuronal hypertrophy, resulting in the ame-

lioration of the behavior [43�,44�]. Similarly, abnormal

synaptic functions could be reversed in adult mice model

for fragile X or Rett syndrome [45�,46,47]. The possibility

to reverse the social and USV alterations of the Nlgn3/4

mutant mice has not been tested yet, but the recent

results obtained on mice model for fragile X or Rett

syndrome provide new hopes for the treatment of ASD.

New routes to ASD?
Two main pathways were identified in the susceptibility to

ASD, but most probably many other tracks can lead to this

complex syndrome. Furthermore, even when a pathway is

identified, the diversity of genotype–phenotype relation-

ships observed in patients with ASD indicates that other

modulators such as serotonin and/or melatonin may play

crucial roles in the onset and severity of ASD [48,49�]. The

recent results have shed light on the origin of ASD and we

are confident that new pathways will be identified soon to

better understand the many facets of ASD.
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