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One of the difficulties in treating any dis-
ease, including those of the nervous sys-
tem, is that even effective treatments can
result in severe side effects. For example,
currently the most effective treatment for
Parkinson’s disease is L-DOPA. Unfortu-
nately, in addition to its antiakinetic prop-
erties, L-DOPA causes multiple motor al-
terations, including dyskinesia (unwanted
spasmodic movements). Thus, it would be
very desirable to prevent dyskinesia with-
out negating the antiakinetic benefits pro-
vided by L-DOPA for Parkinson’s disease
patients. Santini et al. (1) describe a se-
ries of experiments that begin to address
this problem.

Parkinson’s disease is caused by the
loss of dopaminergic neurons in the sub-
stantia nigra that project to the striatum.
This loss of nigrostriatal neurons results
in alterations in intracellular signaling in
medium spiny neurons (MSNs) when
they are exposed to dopaminergic drugs,
including L-DOPA. One key signaling
molecule that is activated in MSNs in re-
sponse to L-DOPA is extracellular sig-
nal–regulated kinase (ERK) (2), an in-
tensely studied protein kinase that is a
core component required for multiple
types of synaptic plasticity (3). L-DOPA
triggers persistent activation of ERK in
MSNs, which is required for dyskinesia
(4). However, ERK is a “hub” molecule
in signaling pathways, integrating diverse
cellular signals and dispersing them to a
multitude of downstream effectors, there-
by making it a problematic drug target
(5). Thus, targeting specific downstream
effectors of ERK might be a more effec-

tive approach for preventing dyskinesia
caused by L-DOPA.

In the hippocampus, long-lasting
synaptic plasticity requires not only ERK
but also the mammalian target of ra-
pamycin (mTOR), a protein kinase that is
intimately involved in the initiation of
translation when in a complex with Rap-
tor (regulatory associated protein of
mTOR) (6, 7); this complex is termed
mTORC1. ERK is required for mTORC1
signaling in protein synthesis–dependent
forms of long-term potentiation (8, 9) and
converges with mTORC1 signaling in
regulating protein synthesis–dependent,
metabotropic glutamate receptor–depen-
dent long-term depression (10). Thus,
ERK and mTORC1 are both required for
long-lasting synaptic plasticity.

Because L-DOPA–induced dyskinesia
has been associated with persistent ERK
activation and enhancements in striatal
synaptic plasticity (11), Santini et al.
posited that mTORC1 might be one of the
downstream effectors of ERK required
for dyskinesia. The authors lesioned mice
unilaterally with 6-hydroxydopamine (6-
OHDA), a toxin often used to induce
Parkinsonian symptoms in rodents. In
biochemical experiments, the authors
showed that administration of L-DOPA to
6-OHDA–lesioned mice increased striatal
phosphorylation of two mTORC1 sub-
strates, p70 S6 kinase (S6K) and initia-
tion factor 4E–binding protein (4E-BP),
both of which are involved in stimulating
translation initiation (6, 7), as well as ri-
bosomal protein S6, a substrate of S6K.
The L-DOPA–induced increase in the
phosphorylation of mTORC1 substrates
was blocked by inhibition of ERK signal-
ing. In addition, the L-DOPA–induced in-
creases in S6K and S6 phosphorylation in

the striatum were blocked by a dopamine
D1 receptor antagonist but not by a D2
receptor antagonist. Taken together, these
findings indicate that D1 receptors and
ERK are required for L-DOPA–induced
activation of mTORC1 in a mouse model
of Parkinson’s disease (Fig. 1).

To identify the striatal MSNs in which
the L-DOPA–induced increase mTORC1
signaling occurred, the authors performed
an elegant set of experiments using im-
munocytochemistry with transgenic mice
expressing enhanced green fluorescent
protein (EGFP) under the control of the
promoter for either the D1 receptor or the
D2 receptor. They found that L-DOPA in-
creased S6 phosphorylation in the MSNs
that contain D1 receptors, but not those
that contain D2 receptors. Moreover, in-
creased phosphorylation of ERK, which
is required for its activation, colocalized
with increased phosphorylation of S6 af-
ter L-DOPA treatment. These f indings
suggest that mTORC1 signaling is in-
creased in the same D1-containing MSNs
that contain increased ERK in response to
L-DOPA treatment.

Santini et al. then addressed the criti-
cal question: Can inhibition of mTORC1
prevent L-DOPA–induced dyskinesia in
mice that model Parkinson’s disease?
Mice were lesioned with 6-OHDA and
treated with L-DOPA for 9 days along
with either vehicle or the mTORC1 in-
hibitor rapamycin, which prevents mTOR
from binding to Raptor (12). L-DOPA
treatment increased mTORC1 signaling,
which was prevented in the mice treated
with rapamycin. Moreover, mice that
were treated with L-DOPA and vehicle
displayed robust dyskinesia, whereas
mice that were treated with L-DOPA and
rapamycin had a large reduction in these
involuntary movements. Finally, to ad-
dress whether rapamycin also inhibited
the beneficial effects of L-DOPA treat-
ment in the Parkinson’s disease model
mice, the authors conducted a cylinder
test and found that rapamycin did not al-
ter the ability of L-DOPA to prevent fore-
limb akinesia produced by the 6-OHDA
lesion.

The array of approaches used by Santini
et al. provided numerous independent lines
of evidence consistent with the idea that
mTORC1 signaling is necessary for L-
DOPA–induced dyskinesia in Parkinson’s
disease model mice. First, they conducted
the “measure” experiment (13) to directly
test whether mTORC1 signaling occurred
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in association with the dyskinesia. Using
biochemical and immunocytochemical ap-
proaches, they found enhanced phosphory-
lation of mTORC1 substrates and their ef-
fectors. Next, using an elegant approach
combining D1 EGFP transgenic mice and
immunocytochemistry, the authors showed
that the increased mTORC1 signaling oc-
curred in D1 receptor–containing MSNs of
the direct pathway. The authors proceeded
to conduct the critical “block” experiment
(13) and found that rapamycin blocked L-
DOPA–induced dyskinesia, demonstrating
that the activation of mTORC1 was func-
tionally relevant for this behavior.

It would be of great interest if a “mim-
ic” experiment (13) could be done to

demonstrate that in-
creasing mTORC1
activity in D1-con-
taining MSNs could
induce dyskinesia in
the 6-OHDA model
of Parkinson’s dis-
ease. One potential
way to conduct this
type of mimic ex-
periment would be
with floxed FK506-
binding protein 12
(FKBP12) mice. It
has been shown that
brain-specific dele-
tion of FKBP12, a
putative endogenous
inhibitor of mTORC1,
results in increased
mTORC1 signaling

(14). Strikingly, the FKBP12 mutant mice
displayed an increase in repetitive behav-
ior, which suggests that increased
mTORC1 signaling might alter striatal
plasticity and behavior. Thus, the specific
deletion of FKBP12 in D1-containing
MSNs might mimic the effect of L-DOPA
in 6-OHDA–lesioned mice.

Rapamycin and its derivatives are cur-
rently being tested as a treatment for pa-
tients with cancer (15), and other classes of
mTORC1 inhibitors are in development
(16). This is of particular interest because
rapamycin did not reduce the L-DOPA–in-
duced increases in the phosphorylation of
the individual mTORC1 substrates and their
effectors to the same extent. Moreover,

mTOR can also exist in a complex with
Rictor (rapamycin-insensitive companion of
mTOR) termed mTORC2, which regulates
the cytoskeleton and phosphorylates Akt
(17, 18). Although mTORC2 was originally
reported to be rapamycin-insensitive (17),
subsequent f indings indicated that pro-
longed rapamycin treatment can inhibit
mTORC2 formation and Akt (19). Thus, it
is possible that the ability of rapamycin to
prevent L-DOPA–induced dyskinesia in
6-OHDA–lesioned mice is through inhibi-
tion of mTORC2 and Akt. Nonetheless,
mTORC1 inhibitors such as rapamycin have
the potential to be a viable therapy to treat
Parkinson’s disease patients with dyskinesia
caused by long-term L-DOPA treatment.

Using an impressive multidisciplinary
experimental approach, Santini et al. pro-
vide a strong argument that mTORC1 sig-
naling in D1-containing MSNs in the
striatum is a critical component of L-
DOPA–induced dyskinesia in Parkinson’s
disease. These results demonstrate for the
first time that translational control in the
striatum is altered in response to L-DOPA
treatment and further confirm the general
role of mTORC1 in long-lasting changes
in behavior.
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