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SUMMARY

Hypothalamic neuropeptides play essential roles in
regulating energy and body weight balance. Energy
imbalance and obesity have been linked to hypotha-
lamic signaling defects in regulating neuropeptide
genes; however, it is unknownwhether dysregulation
of neuropeptide exocytosis could be critically
involved. This study discovered that synaptotag-
min-4, an atypical modulator of synaptic exocytosis,
is expressed most abundantly in oxytocin neurons of
the hypothalamus. Synaptotagmin-4 negatively
regulates oxytocin exocytosis, and dietary obesity
is associated with increased vesicle binding of syn-
aptotagmin-4 and thus enhanced negative regulation
of oxytocin release. Overexpressing synaptotagmin-
4 in hypothalamic oxytocin neurons and centrally
antagonizing oxytocin in mice are similarly obeso-
genic. Synaptotagmin-4 inhibition prevents against
dietary obesity by normalizing oxytocin release and
energy balance under chronic nutritional excess. In
conclusion, the negative regulation of synaptotag-
min-4 on oxytocin release represents a hypothalamic
basis of neuropeptide exocytosis in controlling
obesity and related diseases.

INTRODUCTION

The hypothalamus in the central nervous system (CNS) is known

as the central regulator of feeding, energy, and body weight

homeostasis (Coll et al., 2007; Flier and Maratos-Flier, 1998;

Mobbs, 2007; Park and Bloom, 2005; Schwartz et al., 2000; Uk-

ropec et al., 2006). All these hypothalamic functions are critically

mediated by various hypothalamic neuropeptides. Several well-

appreciated examples of such neuropeptides include a-melano-

cyte stimulating hormone (a-MSH), cocaine and amphetamine

regulated transcript (CART), neuropeptide Y (NPY), and agouti-

related peptide (AGRP). These neuropeptides have been shown

to be controlled at the gene transcriptional levels (Bates et al.,
2003; Kim et al., 2006; Kitamura et al., 2006; Xu et al., 2005) by

nuclear transcription factors that sense nutrient and metabolic

cues of the body (Ahima et al., 1996; Air et al., 2002; Friedman

and Halaas, 1998). Interestingly, recent research has begun to

recognize the importance of neuropeptide posttranscriptional

modulation (Plum et al., 2009), indicating that the control of

neuropeptide gene expression represents only an initial step in

the whole cascade of neuropeptide regulation. Logically, this

process ultimately involves regulation of neuropeptide release

to precisely control the biological functions of neuropeptides.

However, how hypothalamic neuropeptide exocytosis is regu-

lated and whether it is critical for metabolic physiology and

disease have not been explored.

Recent research in basic science has obtained significant

knowledge regarding the general principles of neuropeptide/

neurotransmitter vesicular exocytosis (Stojilkovic, 2005). Studies

based on synaptic neurotransmitter release have identified vesic-

ular exocytosis as a process that is mediated by soluble N-ethyl-

maleimide-sensitive factor attachment protein receptors (SNARE)

complex (Jahn and Scheller, 2006; Südhof and Rothman, 2009)

under the regulation of synaptotagmins (Syts) (Chapman, 2008;

Südhof, 2002).Sytsare agroupofCa2+-bindingproteins that cata-

lyze the formation of SNARE complex to provide the force and

energy required for exocytosis. The mammalian Syt family is

composed of 17members.While most of them are predominantly

present in the CNS, some of them are involved in the vesicular

functions of endocrine cells such as pancreatic a and b cells

(Fukuda and Mikoshiba, 1999; Gao et al., 2000; Gauthier et al.,

2008; Iezzi et al., 2005) and glucose-transport metabolic cells

(Hudson and Birnbaum, 1995; Li et al., 2007). These interesting

studies, which were mainly based on peripheral endocrine

systems, have raised the recent alarm on the potential implication

of Syts in diabetes (Gauthier and Wollheim, 2008). However,

research to date addressing Syts in hypothalamic neuroendocrine

neurons is still missing.

Syt4 is an inducible Syt isoformdetectable only in the brain and

in the neuroendocrine system (Vician et al., 1995), hinting at

a possible role in neuroendocrine physiology.Notably, compared

tootherSyt familymembers, thepuzzling aspect of Syt4 is its lack

of a critical Ca2+-binding amino acid (von Poser et al., 1997) and

related inability to induceCa2+-dependent exocytosis inbiophys-

ical models (Chapman et al., 1998; Thomas et al., 1999). Recent
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Figure 1. Syt4 Distribution in Hypothalamic PVN

(A) Distribution of Syt4 in the hypothalamic PVN. Immunohistochemical stain-

ing of Syt4 in hypothalamic sections across the PVN was examined under

a light microscope. Scale bar = 100 mm.

(B) Neuronal expression of Syt4 in the PVN. PVN sections were coimmunos-

tained for Syt4 (green) and neuronal marker NeuN (red). Colocalization of

two fluorescent signals within the same cells indicates Syt4 expression in

neurons. Scale bar = 50 mm. Inserts: Intracellular distribution of Syt4 in neurons

by coimmunostaining at high magnification (insert scale bar = 5 mm).

(C and D) Syt4 immunogold labeling in hypothalamic PVN (C) and posterior

pituitary (D) sections was examined by electron microscopy. Yellow arrows

indicate Syt4 immunogold labeling. Scale bar = 100 nm.

All experimental mice were adult males, chow-fed, and in the C57BL/6 back-

ground. AMY, amygdala; COR, cortex; LH, lateral hypothalamus; OP, optic

tract; PVN, paraventricular nucleus; PP, posterior pituitary; TH, thalamus;

3V, third ventricle.
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biophysical research reported that Syt4 inhibits exocytotic activ-

ities in the posterior pituitary (Zhang et al., 2009) and in cultured

PC12 cells (Machado et al., 2004), suggesting a potential neuro-

endocrine role of Syt4. In this research, through targeting the

regulators of vesicle exocytosis including SNARE complex

proteins and Syt family members, we identified a hypothalamic

program of oxytocin (OXT) release regulated by Syt4 and estab-

lished thephysiological significance of this regulation in the hypo-

thalamic control of energy balance and related diseases.

RESULTS

Abundant Distribution of Syt4 in the Hypothalamic
Paraventricular Nucleus
The hypothalamus regulates energy balance essentially through

neuropeptide release. Therefore, we explored whether the hypo-

thalamus has a regulatory program for neuropeptide release that

is critical for metabolic physiology, and whether alteration of this

program causes metabolic disease. We adopted a candidate

screening strategy by targeting neuropeptide release regulators,

including SNARE complex proteins and Syt family proteins in the

hypothalamus. Western blots initially confirmed that Syt4 was

detectable in the brain and the posterior pituitary, but not in the

peripheral tissues. Immunostaining further revealed that Syt4

was expressed abundantly in a subpopulation of cells in the para-

ventricular nucleus (PVN) (Figure 1A) and the supraoptic nucleus

of the hypothalamus, but only modestly in a few other brain

regions such as hippocampus and the cortex (data not shown).

The specificity of Syt4 antibody (Zhang et al., 2009) was verified

by western blot and immunostaining analyses of hypothalamic

samples from Syt4 knockout (Syt4�/�) mice (Ferguson et al.,

2000a) (Figures S1A–S1C available online). In addition, both

mRNA in situ hybridization (Figure S1D) and real-time RT-PCR

(Figure S1E) confirmed that Syt4 expression was uniquely en-

riched in the hypothalamus. High-magnification images of Syt4

immunostaining (Figure 1A) revealed that Syt4 was present in

the cell bodies and projections of a subpopulation of cells with

neuronalmorphology in thePVN. Subsequent coimmunostaining

of Syt4 with NeuN (a neuronal marker) confirmed that Syt4 was

exclusively expressed in neurons, but not other cell types (Fig-

ure 1B). High-resolution images of coimmunostaining revealed

that Syt4 colocalizedwith vesicle-like structures in the cytoplasm

and projections of neurons (Figure 1B, inserts). In support of this

observation, Syt4 immunogold labeling and electronmicroscopy

analysis showed that Syt4was abundantly localized in vesicles of

a subpopulation of PVN neurons (Figure 1C) and in axonal termi-

nals of the PVN neurons that projected into the posterior pituitary

(Figure 1D). Thus, in linewith aprevious report thatSyt4 is present

only in the brain and neuroendocrine system (Vician et al., 1995),

our data revealed that Syt4 is abundantly expressed in a specific

subtype of PVN neurons, which may indicate a previously unap-

preciated role of Syt4 in hypothalamic control of physiology.

Nutritional Excess Promotes Syt4 Expression
and Vesicular Localization
Since the PVN is one of the hypothalamic regions that critically

regulate energy and metabolic balance, we subsequently

explored whether nutritional excess could affect the expression
524 Neuron 69, 523–535, February 10, 2011 ª2011 Elsevier Inc.
and vesicular profiles of Syt4 in the hypothalamus-pituitary axis.

First, quantitative real-time RT-PCR was used to measure Syt4

mRNA levels in the hypothalamus of C57BL/6 mice that were

chronically maintained on a normal chow diet versus a high-fat

diet (HFD). Results showed that HFD feeding increased Syt4

mRNA levels in the hypothalamus, but not in other brain regions
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Figure 2. Metabolic Profiles ofMicewith Syt4 Ablation

(A and B) Syt4�/� mice (blue and green curves/bars) and WT

littermate controls (black and red curves/bars) were main-

tained on either a normal chow (black and blue curves/bars)

or an HFD (red and green curves/bars) sinceweaning (3 weeks

old) and were longitudinally monitored for body weight (A) and

food intake (B). Data in (B) represent the average daily food

intake over a 6 month follow-up period.

(C) Normal chow-fed Syt4�/� mice (pink curves) and WT litter-

mate controls (black curves) at 12 weeks of age were

measured for O2 consumption using metabolic chambers.

Data represent real-time (left panel) and daytime average (right

panel) O2 consumption over a 64 hr period. The levels of O2

consumption were normalized by lean bodymass of individual

mice.

(D) Representative DEXA scanning images of Syt4�/� mice

versus WT littermate controls that received 4 months of HFD

feeding since weaning.

(E) Normal chow-fed Syt4�/�mice (green curve) and WT litter-

mate controls (red curve) at 6 weeks of age were switched to

HFD pair feeding (food supply based on the average ad libitum

HFD intake of Syt4�/� mice), and body weight (BW) gains of

these mice were followed up for 4 weeks.

(F–I) HFD-fed C57BL/6 mice received bilateral PVN injections

of Syt4 shRNA lentiviruses or matched control shRNA lentivi-

ruses and were subsequently subjected to HFD pair feeding

after injection. Lentiviral shRNA-mediated Syt4 ablation was

verified by Syt4 immunostaining (green fluorescence) in the

PVN sections (F) and by counting Syt4-positive neurons

across serial PVN sections (G). Mice were measured for O2

consumption at week 1 after injection (H) and followed up

for body weight (BW) gain over a 3 week period (I). Scale

bar = 50 mm.

Data in these experiments were based on male mice. Data in

(A)–(D) also represented similar observations in female mice.

*p < 0.05, **p < 0.01, ***p < 10�3, compared to genotype/treat-

ment-matched controls; n = 6–10 per group (A and B),

and n = 4–6 per group (C, E, and G–I). Error bars reflect

mean ± SEM.
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(Figure S1E), suggesting that Syt4-directed vesicular exocytosis

could be involved in the hypothalamic control of HFD-induced

metabolic disorders. To further evaluate this possibility, Syt4 im-

munogold labeling and electron microscopy were employed to

examine whether HFD feeding could affect vesicular localization

of Syt4 in PVN neurons. Results showed that HFD feeding nearly

doubled the number of vesicle-bound Syt4 particles in PVN

dendrites and axonal terminals (Figures S1F and S1G). Thus,

obesity development under nutritional excess is associated

with hypothalamic changes of Syt4 expression and in particular

Syt4 vesicular distribution.

Syt4 Inhibition Prevents Obesity by Normalizing Energy
Balance
Syt4�/� mice were then employed to test if Syt4 ablation could

affect obesity and related metabolic diseases. Based on our

observation as well as the literature (Vician et al., 1995), Syt4 is

expressed in the brain, but not in peripheral tissues; therefore,

Syt4 knockout functionally targets the brain. We first confirmed

that Syt4�/� mice have normal growth, appearance, viabilities,
and physical activities, and thus represent a suitable model for

metabolic research without involving confounding develop-

mental changes. Syt4�/� mice and wild-type (WT) littermate

controls were maintained on a normal chow upon weaning. At

young ages, Syt4�/� mice displayed similar body weights

compared to WT controls (Figure 2A) despite slightly reduced

food intake (Figure 2B) and evidently increased energy expendi-

ture (Figure 2C). On the other hand, a long-term follow-up re-

vealed that Syt4�/� mice were completely protected from the

development of postadult weight gain (Figures S2A and S2B).

Therefore, the catabolic effects of Syt4 ablation on body weight

were accumulative and required an adequate age to manifest.

Taken together, Syt4 inhibition is catabolic; while its impact on

body weight is minor at young ages, it can provide accumulative

benefits against age-related fat expansion and weight gain at

postadult ages.

To better elucidate the potential antiobesity effect of Syt4 abla-

tion, the paradigm of HFD feeding was applied to Syt4�/� mice

andWT littermate controls after weaning. Data revealed that while

WT controls developed profound obesity over a 6 month period,
Neuron 69, 523–535, February 10, 2011 ª2011 Elsevier Inc. 525
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Figure 3. Counteraction against Insulin and Leptin

Resistance in Syt4–/– Mice

(A–E) Syt4�/�mice (blue and green curves/bars) andWT litter-

mate controls (black and red curves /bars) weremaintained on

a chow (black and blue curves/bars) versus an HFD (red and

green curves/bars) since weaning. At 4 months of age, mice

were analyzed with the glucose tolerance test (GTT) (A and

B), and random blood glucose levels (C), and fasting blood

insulin (D) and leptin (E) levels were also analyzed. AUC,

area under curve of GTT. *p < 0.05, **p < 0.01, n = 5–7 per

group.

(F and G) Syt4�/� mice and WT littermate controls were main-

tained on an HFD for 4 months since weaning. Pancreases

were collected and sectioned for H&E staining (F) and coim-

munostaining of insulin (green) and glucagon (red) (G). Scale

bar = 100 mm.

Data presented were based on male mice but representatives

of both sexes. Error bars reflect mean ± SEM.
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Syt4�/� micemaintained completely normal body weight (Figures

2A and 2D). A prolonged follow-up of 12 month HFD feeding

showed that the body weight of WT mice increased to a morbid

level, but the matched Syt4�/� mice remained intact (Figures

S2C and S2D). DEXA scanning and histological analyses (Figures

S2E–S2H) confirmed that the antiobesity phenotype of Syt4�/�

mice was due to the resistance to fat mass expansion without

loss of lean bodymass. Daily HFD intake of these mice was longi-

tudinally monitored, revealing that Syt4�/� mice consumed

a reduced amount of HFD compared with WT mice (Figure 2B).

Indirect calorimetry was applied to Syt4�/� and WT mice during

the initial stage (�1–2 weeks) of HFD feeding when mice of both

groups still had comparable body weight. Syt4�/� mice, upon

switching to an HFD, had higher energy expenditure levels than

matched WT mice (data not shown), which was similar to the

energy expenditure pattern under the normal chow feeding condi-

tion (Figure 2C). To further assess whether increased energy

expenditure contributed to the antiobesity phenotype of Syt4�/�

mice, HFD pair feeding was provided to adult Syt4�/� and WT

mice. Although the total calories provided through HFD pair

feeding were reduced compared with ad libitum feeding, adult
526 Neuron 69, 523–535, February 10, 2011 ª2011 Elsevier Inc.
WT mice still gained weight over a 4 week

period—an outcome of impaired energy expendi-

ture resulting from HFD-associated malnutrition. In

contrast, a significantly smaller magnitude of weight

gain was observed in Syt4�/� mice under the same

HFD feeding regime (Figure 2E), and such weight

gain reduction can be attributed to elevated energy

expenditure induced by Syt4 ablation.

Finally, we explored whether obesity develop-

ment could be acutely attenuated by Syt4 ablation

through the control of energy expenditure in addi-

tion to food intake. HFD-fed C57BL/6 mice

received bilateral intra-PVN injections of Syt4

shRNA lentiviruses or control lentiviruses (Figures

2F and 2G). HFD pair feeding was then provided

to both groups after injection (Figure S2I).

Compared with the control mice, Syt4 shRNA-in-

jected mice had higher energy expenditure levels
at week 1 postinjection (Figure 2H), a time point when body

weights of both groups were still comparable. Further follow-

up revealed that Syt4 shRNA-injected mice gained less body

weight than control mice (Figures 2I and S2J). Such an anti-

weight gain effect of Syt4 ablation can be specifically related

to increased energy expenditure, since HFD intake was

controlled at the same level via pair feeding. Therefore, in con-

junction with the food intake data in Figure 2B, it can be

concluded that the antiobesity effect of Syt4 inhibition under

nutritional excess is mediated by both energy expenditure

increase and energy (food) intake restriction.

Syt4 Inhibition Prevents against Obesity Comorbidities
The frequent disease consequences of obesity include glucose

intolerance, insulin resistance, and tissue lipid infiltrations. In

the context of Syt4’s relevance to obesity, we additionally as-

sessed whether Syt4 inhibition was sufficient to prevent against

obesity-associated diseases. Under HFD feeding, WT mice

developed severe glucose intolerance (Figures 3A and 3B) and

slight hyperglycemia (Figure 3C); in contrast, Syt4�/� mice

were completely normal. Consistent with these metabolic
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Figure 4. Colocalization of Syt4 with OXT in Hypotha-

lamic PVN

(A) OXT (upper panels, green) or AVP (lower panels, green) in

the PVN was coimmunostained with Syt4 (all panels, red)

and merged to display their colocalization (indicated by yellow

color). Scale bar = 50 mm.

(B) High-magnification images of Syt4 (red) and OXT (green)

coimmunostaining. Yellow color in merged images indicates

intracellular colocalization of Syt4 and OXT. DAPI staining

(blue) revealed nuclei of all cells in the sections. Scale bar =

5 mm.

(C) OXT and Syt4 coimmunogold labeling in OXT versus AVP

axonal terminals. The posterior pituitaries from normal

C57BL/6 mice were sectioned and coimmunogold-labeled

with OXT (small particles) and Syt4 (large particles). The image

represents a junction region that contains both OXT axonal

terminals and AVP axonal terminals (separated by a blue

dotted line). Red arrows indicate dense-core vesicles, and

green arrows indicate microvesicles. Scale bar = 100 nm.

All experimental mice were adult males, chow-fed, and in the

C57BL/6 background.
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profiles, HFD-treated WTmice, but not Syt4�/� mice, developed

profound insulin resistance and leptin resistance, presented in

the forms of hyperinsulinemia (Figure 3D), hyperleptinemia (Fig-

ure 3E), and pancreatic islet hypertrophy (Figure 3F). Double im-

munostaining of insulin and glucagon in pancreatic sections

confirmed that pancreatic islets of HFD-treated WT mice dis-

played centralization of glucagon-producing cells, a morpholog-

ical indicator of islet damage, but such pathologic changes were

not seen in HFD-treated Syt4�/� mice (Figure 3G). Finally, the

mice were assessed for lipid infiltration profiles in the liver and

skeletal muscles. HFD-treated WT mice showed severe hepatic

steatosis (Figure S3A) and muscular lipid deposits (Figure S3B);

in contrast, HFD-treated Syt4�/�mice were completely or signif-

icantly protected from developing these lipid abnormalities. All

these metabolic benefits to Syt4�/� mice were predicted to be

mainly secondary to obesity prevention, but it is also possible

that Syt4 ablation may directly improve obesity-related glucose

and lipid homeostasis.

Colocalization of Syt4 and OXT in the PVN Neurons
Next our study aimed to understand which neuropeptide or

neuropeptides were directed by hypothalamic Syt4 to account
Neuron 69,
for the physiological effects of Syt4 knockout.

Since Syt4 is abundantly expressed in the PVN

neurons (Figure 1), and PVN importantly inte-

grates many other hypothalamic nuclei to control

energy balance, we focused our study on this

hypothalamic site. Coimmunostaining of Syt4

with various PVN neuropeptides revealed that

Syt4 was enriched in OXT-expressing neurons in

the PVN (Figure 4A, upper panels). For compar-

ison, PVN sections were coimmunostained for

Syt4 and arginine vasopressin (AVP), a neuropep-

tide structurally closely related to OXT. Surpris-

ingly, Syt4 was undetectable in the majority of

AVP neurons except for a few that coexpressed

OXT and AVP (Figure 4A, lower panels). These
results indicate that OXT and AVP probably employ different

Syt-directed regulatory systems to control their exocytosis,

and such a difference may form a basis for their different phys-

iological functions.

Subsequently, high-magnification imaging of Syt4 and OXT

coimmunostaining was used to examine the morphology of

Syt4-containing subcellular structures in detail. As shown in Fig-

ure 4B, the subcellular organelles recognized by Syt4 immunos-

taining displayed the appearance of aggregated vesicles that

were also encompassed by OXT, suggesting that Syt4 is physi-

cally present in OXT vesicles. To prove this hypothesis, immuno-

gold colabeling of Syt4 with OXT and electron microscopy

analysis were performed, and data confirmed that Syt4 was

selectively present in the dendritic and axonal vesicles of OXT

neurons (Figure 4C). In comparison, Syt4-positive vesicles

were not detected in adjacent AVP neurons (Figure 4C). In addi-

tion to the dense-core vesicles, Syt4 particles appeared to be

modestly present in microvesicles, suggesting that regulation

of neurotransmitter release by Syt4 in these neurons is also

possible. Overall, Syt4 is expressed specifically in OXT neurons

and might critically regulate OXT release to modulate the biolog-

ical functions of hypothalamic OXT.
523–535, February 10, 2011 ª2011 Elsevier Inc. 527
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Figure 5. Metabolic Effects of Syt4 in Hypothalamic

OXT Neurons

(A–E) Chow-fed C57BL/6 mice received bilateral intra-PVN

injections of OXT promoter-driven Flag-tagged Syt4 lentivi-

ruses (OP-Syt4) versus OXT promoter-driven GFP lentiviruses

(OP-GFP). (A) Lentivirus-induced GFP expression (green) was

coimmunostained with endogenous OXT expression (red) in

the PVN. Merged image indicates GFP expression in OXT

neurons. DAPI staining (blue) revealed the nuclei of all cells

in the section. Scale bar = 50 mm. (B) The percentage of OXT

neurons immunoreactive for GFP versus Flag in serial PVN

sections that were coimmunostained for GFP or Flag with

OXT. (C and D)Mice received daily injections of OXT (+) versus

control vehicle (�) via preimplanted third ventricle cannula for

1 week, and daily food intake and weekly body weight (BW)

gain weremeasured. (E) Lentivirus-injectedmice were longitu-

dinally monitored for BW gain over a 20 week period.

(F–H) Chow-fed Syt4�/� mice and WT littermate mice were

bilaterally injected with OP-Syt4 versus OP-GFP lentiviruses

in the PVN. (F) Syt4mRNA in the hypothalamus wasmeasured

at week 1 after injection. (G and H) Lentivirus-injected mice

were placed on an HFD, and monitored for BW gain (G) and

HFD intake (H) over a 20 week period. AU, arbitrary unit.

Mice in these experiments were males. *p < 0.05, **p < 0.01;

NS, nonsignificant; n = 5–7 per group (A–D), and n = 6–8 per

group (E–H). Error bars reflect mean ± SEM.
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Syt4 in OXT Neurons Mediates Metabolic Actions
The connection between Syt4 and OXT prompted further inves-

tigation of whether Syt4 acts in OXT neurons to mediate the anti-

obesity benefit of Syt4�/� mice. To do so, we examined whether

an exogenous induction of Syt4 in OXT neurons within the PVN

could recapitulate the effects of HFD feeding to cause weight

gain. OXT gene promoter (Zhang et al., 2002) was used to

generate OXT neuron-specific Syt4 or control (GFP) lentiviruses.

The cell specificity of these lentiviruses was verified by exam-

ining the PVN of virus-injected mice (Figures 5A and 5B). As ex-

pected, delivery of Syt4 into OXT neurons within the PVN

mimicked HFD feeding to promote food intake (Figure 5C) and

weight gain (Figures 5D and 5E) in C57BL/6 mice despite normal

chow feeding condition. Importantly, both effects were abol-

ished by daily OXT injections via the third ventricle (Figures 5C

and 5D), indicating that OXT in the brain can antagonize the

metabolic action of Syt4. In parallel, we examined whether the

antiobesity phenotype of Syt4�/� mice could be reversed by

restoring Syt4 in OXT neurons. OXT neuron-specific Syt4 or

control GFP lentiviruses were injected into the PVN of HFD-fed

Syt4�/� mice and matched WT controls. All mice were main-

tained on an HFD after injection. Quantitative real-time RT-PCR
528 Neuron 69, 523–535, February 10, 2011 ª2011 Elsevier Inc.
analysis revealed a 42% restoration of Syt4 mRNA

in the PVN of Syt4�/�mice (Figure 5F). Longitudinal

food intake and body weight monitoring indicated

that the delivery of Syt4 significantly abrogated

the antiobesity phenotype of Syt4�/� mice (Fig-

ure 5G), and thesemice regained hyperphagia (Fig-

ure 5H). The reversal of metabolic changes was

partial, which might be related to the technical limi-

tation of a viral injection approach, or it might point

to the possibility that other neurons in the brain also
contribute to the metabolic phenotype of Syt4�/� mice. Alto-

gether, based on the gain-of-function study using conventional

C57BL/6 mice and the rescue experiment using Syt4�/� mice,

it can be concluded that OXT neurons are important for themeta-

bolic effects of Syt4.

Syt4 Negatively Regulates OXT Release in the PVN
Following the above physiological studies, we aimed to investi-

gate if and how Syt4 can regulate OXT exocytosis. Experiments

were designed to test the effects of Syt4 loss of function on OXT

release via OXT ex vivo release assay, an established method to

study OXT release in the PVN (Jin et al., 2007; Sladek and Som-

ponpun, 2008). Live PVN slices from the hypothalamus of chow-

fed Syt4�/� mice or WT controls were used for OXT release

measurement. Results revealed that Syt4 ablation significantly

enhanced OXT release in the PVN slices under both basal and

KCl-depolarized conditions (Figure 6A). This finding was

confirmed by an independent assay that analyzed the 60 min

dynamics of OXT release in the PVN tissues from Syt4�/� versus

WT mice (Figures S4A and S4B). Hypothalamic OXT mRNA

levels were comparable between chow-fed Syt4�/� and WT

mice (Figure S5A), which excluded the involvement of OXT
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Figure 6. Regulation of OXT Release by Syt4 and OXT’s Metabolic

Action

(A) PVN slices were prepared from chow-fed Syt4�/� mice and WT littermate

controls at 3 months of age. Tissues were incubated in Locke’s solution,

washed every 5 min for 10 times, and incubated for 5 min in Locke’s solution

in the presence or absence of 70 mM KCl. Aliquots of the final solution were

used to measure OXT release. *p < 0.05, n = 6–8 per group.

(B)Syt4�/�mice andWT littermate controls weremaintained on a normal chow

versus an HFD for 4months sinceweaning, and serum samples were collected

to measure serum OXT concentrations. **p < 0.01, n = 8–10 per group.

(C and D) Adult C57BL/6 mice received third ventricle injection of OXT (4 mg)

versus vehicle (Veh) and were monitored for food intake (C) and O2 consump-

tion (D) over a 4 hr period after injection. The levels of O2 consumption were

normalized by lean body mass of individual mice. *p < 0.05, **p < 0.01,

n = 11 per group (C), and n = 4 per group (D).

(E and F) Three-month-old Syt4�/� mice and WT littermate controls received

HFD feeding for three months. A subgroup of mice received bilateral injections

of OP-Syt4 or OP-GFP lentiviruses in the PVN prior to the 3 month HFD treat-

ment (E, right panel). The PVN slices from these mice were prepared and incu-

bated in Locke’s solution, andweremeasured for OXT release under basal and

KCl-stimulated conditions. (F) OXT release efficiency of PVN slices from the

virus-injected Syt4�/� mice was calculated as the ratio of KCl-stimulated

OXT release to the basal OXT release, and data are presented as fold changes

compared with WT control. *p < 0.05, n = 4–8 per group.

Mice in all these experiments were males. Error bars reflect mean ± SEM.
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gene expression. These data indicate that Syt4 negatively regu-

lates OXT exocytosis, which is supported by the inhibitory struc-

tural (Chapman et al., 1998; Thomas et al., 1999) and biophysical
(Zhang et al., 2009) characteristics of Syt4. We further inferred

that the blood OXT levels should be higher in Syt4�/� mice

than in WT controls regardless of dietary conditions. Measure-

ments of circulating OXT levels in Syt4�/� andWTmice on either

a normal chow or an HFD confirmed this prediction (Figure 6B).

We also measured hypothalamic OXT mRNA levels of HFD-fed

Syt4�/� and WT mice. Compared with chow feeding, HFD

enhanced OXT mRNA levels in WT mice (Figure S5A), which

was likely a compensatory response to suppressed OXT release

under HFD. In contrast, hypothalamic OXT mRNA levels were

comparable between HFD-fed and chow-fed Syt4�/� mice (Fig-

ure S5A), indirectly indicating that HFD-fed Syt4�/� mice did not

suffer OXT release impairment. To summarize, exocytosis, but

not gene expression, of OXT is negatively regulated by Syt4.

Brain OXT Restricts Food Intake and Promotes Energy
Expenditure
OXT is a hypothalamic neuropeptide that is synthesized by OXT

neurons and released from both axon terminals and somato-

dendritic regions. In addition to its classical role in reproductive

physiology, OXT also regulates various social behaviors such

as care, love, emotion, and trust (Ferguson et al., 2000b; Keverne

and Curley, 2004; Kosfeld et al., 2005). Of note, many of these

classical and nonclassical actions of OXT were associated with

feeding changes (Douglas et al., 2007; Leng et al., 2008). More

recently, genetic studies reported that hyperphagia and obesity

developed in mice that were genetically deficient in OXT (Amico

et al., 2005; Kublaoui et al., 2008) or OXT receptor (Takayanagi

et al., 2008). While these genetic approaches targeted the whole

body, the brain-specific role of OXT in metabolic physiology has

not yet been defined. To study the central action of OXT, we in-

jected OXT into the brains of normal C57BL/6 mice via third

ventricle cannula. Central administration of OXT readily sup-

pressed food intake (Figure 6C) and elevated energy expenditure

(Figure 6D). Importantly, brain injection of OXT did not yield side

effects on the general health, as confirmed by multiple behav-

ioral tests including kaolin intake test (Figure S5B), conditioned

taste aversion test (Figure S5C), elevated plus maze (Fig-

ure S5D–S5F), and open field test (Figure S5G). In conclusion,

OXT in the brain can exert a catabolic regulatory effect on energy

balance by restricting food intake and promoting energy

expenditure.

Obesity Is Associated with Impaired OXT Release
Following the observations that HFD-induced obesity is associ-

ated with increased hypothalamic Syt4 mRNA levels and Syt4

vesicular distribution (Figures S1E–S1G), we predicted that

dietary obesity might be causally related to altered OXT release.

This hypothesis was also suggested by the data in Figure 6B

showing that circulating levels of OXT in HFD-fed mice were

reduced by �40% compared with those of chow-fed mice. To

test this hypothesis, we employed an ex vivo OXT release assay

to determine if HFD feeding could affect OXT release of the hypo-

thalamic PVN. KCl-induced depolarization elicited an OXT

release response in the PVN slices of chow-fed WT mice (Fig-

ure 6A), but this effect was blunted by HFD feeding (Figure 6E,

left panel). In contrast, HFD did not blunt depolarization-induced

OXT release in the PVN slices of Syt4�/� mice (Figure 6E, left
Neuron 69, 523–535, February 10, 2011 ª2011 Elsevier Inc. 529
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Figure 7. Hypothalamic Syt4-OXT Links HFD Feeding

to Disease

(A–D) Syt4�/� mice and WT littermate controls were main-

tained on a normal chow (A and B) versus an HFD (C and D)

for 3months since weaning, andwere subsequently implanted

with cannula into the third ventricle. After 2 weeks of postop-

erative recovery, mice received daily third ventricle injections

of OVT (4 mg) versus vehicle (Veh) for 2 weeks, and were moni-

tored for daily 12 hr daytime food intake after injection (A and

C) and weekly body weight (BW) gain (B and D) during the

2 week treatment period. *p < 0.05, n = 5–6 per group. Mice

in all these experiments were males.

(E–J) Syt4�/� mice and WT littermate controls were main-

tained on a normal chow (E–H) versus an HFD (I and J) for

5 months since weaning, and subsequently received bilateral

intra-PVN injection of OXT shRNA (OXT-s) lentiviruses or

control shRNA (Ctr-s) lentiviruses. (E and F) Lentivirus-medi-

ated OXT ablation was assessed by OXT immunostaining

(E, upper panels) and quantitated by countingOXT-expressing

neurons in the serial PVN sections (F). AVP immunostaining of

matched PVN sections (E, lower panels) was used as a control.

3V: third ventricle; scale bar = 50 mm. (G–J) Mice were moni-

tored for daily food intake (G and I) and weekly BW gain

(H and J) during a 3 week follow-up. *p < 0.05, n = 4–7 per

group. Mice in all these experiments were males. Error bars

reflect mean ± SEM.
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panel). Moreover, when Syt4 expression was restored into OXT

neurons by lentivirus-mediated gene delivery, depolarization

failed to elicit OXT release in the PVN slices of HFD-fed Syt4�/�

mice (Figure 6E, right panel, and Figure 6F). In sum, while obesity

causes impaired OXT release of the PVN, the antiobesity pheno-

type of Syt4�/� mice is associated with retained sensitivity of

OXT release.

Obesogenic Effects of OXT Antagonists in WT
and Syt4–/– Mice
To further analyze the significance of the hypothalamic Syt4-OXT

pathway in obesity development, we examined whether OXT

antagonists could be obesogenic. First, a pharmacological

approach was employed by daily injections of OVT (an OXT

antagonist) into the third ventricle of WT and Syt4�/� mice under

a chow or HFD feeding condition. Compared with vehicle injec-

tions, OVT increased food intake in chow-fed WT and Syt4�/�

mice (Figure 7A), resulting in increased weight gain over

a 2 week follow-up period (Figure 7B). Similarly, OVT increased

food intake in HFD-fed WT and Syt4�/� mice (Figure 7C). As

a result, the effect of HFD in promoting weight gain was exacer-

bated in WT mice, and the antiobesity phenotype in HFD-fed
530 Neuron 69, 523–535, February 10, 2011 ª2011 Elsevier Inc.
Syt4�/� mice was significantly abrogated (Fig-

ure 7D). Next, OXT shRNA lentivirus was used to

evaluate the Syt4-OXT connection in the brain

control of feeding and body weight. Syt4�/� mice

and WT controls, maintained on either chow or

HFD feeding, received bilateral intra-PVN injections

of OXT shRNA lentiviruses or control lentiviruses.

Immunostaining confirmed that OXT shRNA

delivery sufficiently ablated the expression of

OXT, but not the control neuropeptide AVP, in the
PVN (Figures 7E and 7F). As shown in Figures 7G–7J, shRNA-

mediated OXT ablation increased food intake and weight gain

similarly in WT mice and Syt4�/� mice under either chow or

HFD condition. Compared with OVT injection, the obesogenic

effects of OXT shRNA were stronger, consistent with the obser-

vation thatOXT shRNA affected 24 hr food intake while the effect

of OVT injection lasted only �12 hr after injection. In summary,

results from both pharmacological and shRNA lentiviral injection

experiments indicate that OXT critically mediates the role of Syt4

in hypothalamic control of weight gain and obesity.

Therapeutic Potential of OXT in Preventing Obesity
The overall results in Figures 1–7 demonstrated that chronic

nutritional excess can promote hypothalamic Syt4 to suppress

OXT release, leading to energy imbalance and obesity. Following

these findings, we explored the therapeutic relevance of this

conceptual model by testing if central administration of OXT

could treat dietary obesity in mice. C57BL/6 mice were first

allowed to develop obesity via 5 month HFD feeding, and were

subsequently implanted with third ventricle cannula. Following

postsurgical recovery, mice received daily ICV injections of

OXT or vehicle control for a period of 2 weeks. Injections were
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Figure 8. Antiobesity Therapy by OXT and the Syt4-OXT Model in

Disease

(A) Male C57BL/6 mice with dietary obesity (via 5 months of HFD feeding)

received daily third ventricle injections of OXT (1 mg/day) versus vehicle for

15 days, andweremonitored for body weight gain during the treatment period.

*p < 0.05, **p < 0.01, n = 5–10 per group. Error bars reflect mean ± SEM.

(B) Model of hypothalamic Syt4-OXT in the neural mechanism of obesity and

related diseases. Chronic nutritional excess sensitively upregulates Syt4 in

the hypothalamus to suppress OXT release, leading to energy imbalance

and the development of obesity and comorbidities. Syt4 and OXT represent

two molecular targets for the intervention of obesity and related diseases.
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given every night before the light was off so that the duration

(�4 hr) of OXT action overlapped the peak food-consuming

period (�6 hr) of mice. Data revealed that OXT treatment rapidly

reduced the magnitude of obesity during the first 3 days of the

treatment and subsequently preventedHFD from causingweight

gain (Figure 7A). Comparatively, we assessed whether OXT

treatment might affect the body weight of chow-fed mice—

which is mainly composed of lean body mass. Three days of

OXT injections were found to only slightly reduce the body

weight of chow-fed mice, while the same treatment had

a more evident antiobesity effect in age- and sex-matched

HFD-fed mice (Figure S5H). Thus, OXT has a strong antiobesity

effect, but its impact on lean body mass was minimal, high-

lighting the potential value of OXT analogs in obesity treatment.

To summarize this study, Syt4-directed OXT release in the hypo-

thalamus is critical for obesity development (Figure 8B), and Syt4

inhibitors or OXT analogs bear clinical potentials for treating

obesity and related health problems.

DISCUSSION

Neuropeptide Exocytosis in Hypothalamic Control
of Energy Balance
The CNS regulates whole-body energy balance primarily via the

mediobasal region and the PVN of the hypothalamus (Elmquist

and Flier, 2004; Schwartz and Porte, 2005). Recent research

advances have significantly elucidated the neuronal subtypes

and molecular pathways in these hypothalamic regions that

direct the central control of feeding and energy expenditure

(Balthasar et al., 2005; Bouret et al., 2004; Cone, 2005; Cowley

et al., 2001; Elmquist and Flier, 2004). The underlying molecular

basis involves transcriptional regulation of neuropeptide genes

in response to dynamic changes of the body’s energy status

(Brüning et al., 2000; Coll et al., 2007; Cota et al., 2006; Flier

and Maratos-Flier, 1998; Friedman and Halaas, 1998; Minokoshi

et al., 2004; Mobbs, 2007; Münzberg and Myers, 2005; Park and

Bloom, 2005; Schwartz et al., 2000). However, compared with

the appreciated neuropeptide gene regulation, the role of neuro-

peptide exocytotic regulation inmetabolic actions remains unex-

plored, despite recent basic research advances showing that

neuropeptide release from secretory granules is a cellular event

with sophisticated regulation (Stojilkovic, 2005). The present

work discovered that exocytosis regulator Syt4 is expressed

predominantly in a neuronal subtype of hypothalamic PVN,

OXT neurons. Moreover, Syt4 is revealed to negatively regulate

OXT release from OXT neurons. The physiological role of this

negative regulation by hypothalamic Syt4 is anabolic, and under

the environment of chronic nutritional excess, this Syt4 program

is further enhanced by an unidentified mechanism or mecha-

nisms to become obesogenic. While forcefully suppressing this

Syt4 program does not evidently impact normal body weight

homeostasis—which might be due to rebalance by other

anabolic/catabolic systems—it provides a remarkable and

nearly complete protection against the development of obesity

and various other metabolic diseases under nutritional excess.

These findings suggest that the significance of hypothalamic

neuropeptide exocytotic regulation in obesity development and

control is substantial. Along this line, further research is needed
to explore the exocytotic regulations of other hypothalamic

neuropeptides/neurotransmitters and the implications of these

potential regulations in hypothalamic control of physiology and

disease.

Inhibitory Regulation of Syt4 on OXT Exocytosis
The identification of the hypothalamic Syt4-OXT pathway by this

work can provide an answer to the question regarding the phys-

iological function of Syt4. Unlike other Syt members, Syt4

contains an atypical C2A domain in a midacid sequence (von

Poser et al., 1997) and fails to catalyze the Ca2+-dependent

exocytosis (Chapman et al., 1998; Thomas et al., 1999). The

physiological relevance of Syt4 became more puzzling with the

relatively normal phenotype of Syt4�/� mice under normal

feeding condition (Ferguson et al., 2000a), calling into question

whether Syt4 can really regulate vesicle exocytosis in vivo.
Neuron 69, 523–535, February 10, 2011 ª2011 Elsevier Inc. 531
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A recent electrophysiological study pointed to the neuroendoc-

rinic relevance of Syt4 (Zhang et al., 2009); however, it offered

only a biophysical characterization rather than a physiological

study of Syt4 function in neuroendocrine and related diseases.

In the current work, we obtained results establishing Syt4 as

an important negative regulator of OXT exocytosis in the hypo-

thalamic neuroendocrine system. Considering that Syt4 is

present not only in dense-core vesicles but also inmicrovesicles,

we speculate that Syt4 may also contribute to the regulation of

neurotransmitter release. While such a possibility was not exam-

ined in the current study, it represents an interesting subject for

the next-step investigation. Other immediate questions stem-

ming from the current research include whether and how other

Syt members might be involved in the hypothalamic control of

neuropeptide/neurotransmitter release to direct metabolic phys-

iology and disease. Studies toward understanding these ques-

tions could form an interesting research area that addresses

the role of vesicular exocytosis in the hypothalamic control of

endocrine and metabolic physiology.

Central Actions of OXT in Controlling Energy Balance
OXT, a hypothalamic neuropeptide known for its role in medi-

ating reproductive activities, is synthesized by neurons that

are localized predominantly in the PVN of the hypothalamus.

OXT is released on demand to the blood stream from neuronal

axon terminals that innervate the posterior pituitary. Recent

attention has been drawn to OXT’s role in regulating social

behaviors, including care, love, emotion, and trust (Ferguson

et al., 2000b; Keverne and Curley, 2004; Kosfeld et al., 2005),

and local release of OXT in the brain seems to underlie these

regulations (Ludwig et al., 2002; Ludwig and Leng, 2006). In

addition, OXT has catabolic effects through suppressing food

intake and promoting physical activities (Douglas et al., 2007;

Leng et al., 2008). More recently, several genetic studies re-

ported the development of overeating and obesity in mice that

were deficient in OXT (Amico et al., 2005; Kublaoui et al.,

2008) or OXT receptor (Takayanagi et al., 2008). The current

research focused on OXT exocytosis regulation and provided

evidence supporting the notion that regulation of OXT’s local

release is critical for hypothalamic control of energy and body

weight balance. This concept is in line with recent literature

that linked OXT to the hypothalamic actions of leptin (Kutlu

et al., 2010) and nesfatin (Maejima et al., 2009). Moreover, our

research revealed a reverse relationship between OXT and

feeding, i.e., excessive nutrient intake through HFD feeding

suppresses OXT release. This observation is supported by

a recent study showing that chronic sugar intake dampened

the feeding-related c-Fos expression (an indicator of neuronal

activities) in OXT neurons (Mitra et al., 2010). Therefore, compro-

mised action of OXT represents a significant hypothalamic

mechanism for the development of dietary obesity and comor-

bidities. In addition to the mechanistic understanding, our

experiments further confirmed that brain injection of OXT was

effective in treating mouse obesity without causing appreciable

nonspecific or side effects. However, given that OXT has a short

half-life, the use of OXT for human obesity treatment remains

challenging until appropriate OXT analogs and practical delivery

methods can be developed.
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Syt4: A Potential Antiobesity Target
The hypothalamus has been known as a pathogenic culprit for

overeating, obesity, and related diseases. The underlyingmolec-

ular mechanisms have been related to hypothalamic leptin and

insulin resistance, which involve SOCS3, PTP1B, IKK/NF-kB,

MyD88, and ER stress (Bence et al., 2006; Howard and Flier,

2006; Kievit et al., 2006; Kleinridders et al., 2009; Zhang et al.,

2008). The current research demonstrated that chronic nutri-

tional excess suppresses OXT release to promote obesity devel-

opment, and more importantly, Syt4 is identified as the mediator

for this dysregulation and hence a molecular target to prevent/

reverse the pathogenesis of obesity. Such potentials of Syt4

were verified in animals by the current research showing that

Syt4 inhibition was sufficient to prevent or reverse obesity.

Notably, the catabolic effect of Syt4 inhibition on body weight

in lean animals was modest, reflecting only a ‘‘miniature’’ level

of negative energy balance; such a small quantity of negative

energy balance is insufficient to cause deleterious effects on

health, but accumulatively is sufficient to prevent or treat obesity.

Thus, in addition to OXT analogs, developing Syt4 modulators

could be another avenue for targeting the Syt4-OXT pathway

to combat obesity and related diseases.

EXPERIMENTAL PROCEDURES

Animals and Phenotyping

C57BL/6 mice were purchased from Jackson Laboratory. Syt4�/� mice were

previously described (Ferguson et al., 2000a) and backcrossed into C57BL/6

for more than five generations. All mice were housed in standard conditions.

HFD was from Research Diets, Inc. The Institutional Animal Care and Use

Committee approved all the procedures. Mouse body weight was regularly

measuredand food intakewasdeterminedonadailybasisby individual housing.

For pair feeding, individually housed mice were provided daily with a defined

amount of food, which was based on mouse group with lower ad libitum food

intake prior to pair feeding. Mice that did not consume the whole amount of

supplied food were excluded from the final analysis. Energy expenditure was

determined using metabolic chambers (Columbus Instrument, Inc.) at DRTC

core facility of Albert Einstein College of Medicine. For the glucose tolerance

test (GTT), overnight-fasted mice were IP injected with glucose (2 g/kg body

weight). Blood glucose was measured using Glucometer Elite (Bayer). Blood

insulin and leptin were measured using ELISA kits (Crystal Chem.). Serum OXT

levels were measured using Oxytocin EIA kit (Assay Design).

Third Ventricle Cannulation and Animal Treatment

Aspreviously described (Zhang et al., 2008), an ultraprecise small animal stereo-

tactic apparatus (Kopf Instruments) was employed to implant a guide cannula

into the third ventricle of anesthetized mice at the midline coordinates of

1.8 mm posterior to the bregma and 5.0 mm below the skull surface. Mice

were allowed �1–2 weeks for postsurgical recovery. Individually housed mice

received OXT injection (Bachem California, Inc.) via preimplanted cannula.

Lentiviruses and Intra-PVN Injection

Lentiviral vectors using mouse OXT gene cassette (Zhang et al., 2002) to direct

OXT neuron-specific expression of Flag-tagged Syt4 or GFP were created as

previously described (Zhang et al., 2008). Briefly, DNA of mouse OXT gene

cassette (AI-03) was provided by Dr. H. Gainer (Zhang et al., 2002), and the

translation start of exon I was mutated and inserted with Flag-tagged Syt4

or GFP cDNA in the truncated exon III. Lentiviral shRNA against mouse OXT

or Syt4 and the matched control lentiviral vector were purchased from Sigma.

Lentiviruses were produced from HEK293T cells through cotransfection of

target plasmids with their packaging plasmids using Ca3(PO4)2. Lentiviruses

were purified by ultracentrifugation. As previously described (Zhang et al.,

2008), an ultraprecise stereotax was employed to bilaterally inject lentiviruses
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into the PVN at the coordinates of 0.85 mm posterior to the bregma, 0.15 mm

lateral to the midline, and 4.8 mm below the skull surface.

Ex Vivo OXT Release Test

The protocol has been describedpreviously (Jin et al., 2007). Briefly, the PVN sli-

cesweredissected fromthehypothalamus. In someexperiments, thePVNslices

were cut into small pieces at the size of�0.5 mm. The PVN slices were immedi-

ately incubated in Locke’s solution constantly supplied with 95% O2 and 5%

CO2 at 37�C. The solution was changed every 5 to 10 min during the 60 min

experimental period. An aliquot of Locke’s solution was collected to measure

the basal levels of OXT release. Depolarization was induced during the final 5

to 10 min by adding KCl to Locke’s solution at a final concentration of 70 mM,

and an aliquot of Locke’s solution was collected to measure KCl-stimulated

release of OXT. PVN slices were also collected in some experiments, washed,

and lysated for the measurement of tissue OXT content. Oxytocin EIA kit (Assay

Design) was used to determine the OXT levels in the solution and tissues.

Heart Perfusion and Brain Immunostaining

Mice under anesthesia were trans-heart perfused with 4% PFA, and brains

were removed, postfixed in 4% PFA for 4 hr, and infiltrated with 20%–30%

sucrose. Brain sections (20 mm thickness) were made using a cryostat at

–20�C. Fixed brain sections were blocked with serum of the appropriate

species, penetrated with 0.2% Triton X-100, and treated with primary anti-

bodies including rabbit anti-Syt4 (Synaptic Systems), mouse anti-NeuN

(Chemicon), guinea pig anti-OXT, and anti-AVP (Peninsula Lab) IgGs, and fol-

lowed by either a reaction with Alexa Fluor 488 or 555 secondary antibody

(Invitrogen) or a reaction using an ABC kit (Vector Lab). Control IgGs of the

appropriate species were used as negative controls. A light microscope was

used to detect color staining, and a confocal microscope, to detect

fluorescence.

Immunogold Labeling and Electron Microscopy

Mice under anesthesia were trans-heart perfused with 1%PFA and 1% glutar-

aldehyde, and tissues were isolated, postfixed, dehydrated, embedded in

London Resin White, and sectioned at 100 nm. For immunogold labeling,

tissue sections on nickel grids were quenched, blocked, and incubated with

rabbit anti-Syt4 antibody and guinea pig anti-OXT antibody overnight at 4�C,
followed by incubation with gold particle (size: 10 nm or 20 nm)-conjugated

secondary antibodies (Ted Pella) for 2 hr at room temperature. Sections

were poststainedwith uranyl acetate and lead citrate, examined on an electron

microscope (Hitachi 7500), and imaged using AMT digital imaging equipment.

Quantitative RT-PCR

Total RNA from the homogenized tissue samples was extracted using TRIzol

(Invitrogen). Complementary DNA was synthesized using the Advantage RT-

for PCR kit (Clontech). PCR amplification of Syt4 mRNA was quantified using

SYBR�Green PCRMasterMix (Applied Biosystems). Results were normalized

against the expression of house-keeping genes including TATA box-binding

protein (TBP) or b-actin.

Statistical Analyses

Two-tailed Student’s t tests were used for two-group comparisons. ANOVA

and appropriate post hoc analyses were used for comparisons of more than

two groups. Data were presented as mean ± SEM. p < 0.05 was considered

statistically significant.
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