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Variations in maternal behavior among lactating rats associate with differences in estrogen-oxy-
tocin interactions in the medial preoptic area (mPOA) and in dopamine levels in the nucleus
accumbens (nAcc). Thus, stable, individual differences in pup licking/grooming (LG) are abolished
by oxytocin receptor blockade or treatments that eliminate differences in the nAcc dopamine
signal. We provide novel evidence for a direct effect of oxytocin at the level of the ventral teg-
mental area (VTA) in the regulation of nAcc dopamine levels. Mothers that exhibit consistently
increased pup LG (i.e. high LG mothers) by comparison with low LG mothers show increased
oxytocin expression in the mPOA and the paraventricular nucleus of the hypothalamus and in-
creased projections of oxytocin-positive cells from both mPOA and paraventricular nucleus of the
hypothalamus to the VTA. Direct infusion of oxytocin into the VTA increased the dopamine signal
in the nAcc. Finally, high compared with low LG mothers show greater increases in dopamine signal
in the nAcc during bouts of pup LG, and this difference is abolished with infusions of an oxytocin
receptor antagonist directly into the VTA. These studies reveal a direct effect of oxytocin on
dopamine release within the mesocorticolimbic dopamine system and are consistent with
previous reports of oxytocin-dopamine interactions in the establishment and maintenance of
social bonds. (Endocrinology 151: 2276 –2286, 2010)

Maternal behavior in the rat is dependent on hor-
monal changes in late pregnancy that include ele-

vations in estradiol levels (1–4) and accompanying in-
creases in estrogen receptor activation in the brain regions,
such as the medial preoptic area (mPOA) (5). The estro-
genic effect is critical for hormonal mediators of maternal
behavior such as prolactin or oxytocin (3, 6). Estradiol
implants into the mPOA stimulate maternal behavior, in
part, through effects on oxytocin receptor activity (7, 8).
Treatment with an oxytocin-antisera or an oxytocin re-
ceptor antagonist (OTA) directly into the mPOA blocks
the effect of estradiol on maternal behavior (8, 9). Intra-
cerebroventricular (ICV) administration of oxytocin
stimulates maternal behavior in virgin rats (10). This
effect is abolished by ovariectomy and reinstated with

estradiol treatment (11), reflecting the interdependence
of estrogens and oxytocin in the regulation of maternal
behavior in the rat.

Individual differences in specific forms of maternal be-
havior are also related to estrogen-oxytocin interactions.
Lactating female rats that exhibit increased pup licking/
grooming (LG; i.e. high LG mothers) show enhanced ex-
pression of estrogen receptor-� and increased oxytocin
receptor binding in the mPOA by comparison to low LG
dams (12–15). An ICV infusion of OTA on d 3 postpartum
completely eliminates the difference in pup LG between
high and low LG mothers (13).

An obvious question concerns the relevant neural target
for the estrogen-oxytocin signaling. Projections from the
mPOA to the ventral tegmental area (VTA), which con-
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tains dopamine neurons, regulate maternal behavior in the
rat (16). Nursing bouts increase both Fos expression (17)
and extracellular dopamine levels in the nucleus accum-
bens (nAcc) (18, 19). Chemical lesions of the dopamine
projections to the nAcc (18) or direct infusion of dopamine
receptor antagonists into the nAcc (20, 21) disrupt ma-
ternal behavior. High LG mothers show significantly in-
creased dopamine levels in the nAcc shell during periods of
pup LG compared with low LG mothers; treatment of dams
with a dopamine reuptake blocker eliminates the group dif-
ferences in both nAcc dopamine levels and pup LG (19).

Pedersen et al. (9) found that OTA infusions into the
VTA impair maternal behavior. These findings and those
of Numan and Stolzenberg (22) suggest that oxytocin pro-
jections from the mPOA might act directly on the VTA to
regulate dopamine release during mother-pup interac-
tions. The results of studies reported here support this
hypothesis and suggest that variations in mother-pup in-
teractions are associated with differences in oxytocinergic
regulation of the mesolimbic dopamine system.

Materials and Methods

Animals and maternal behavior
The animals were outbred Long-Evans, hooded rats born in

our colony and housed in 46 � 18 � 30-cm Plexiglas cages. Food
and water were provided ad libitum. The colony was maintained
on a 12-h light, 12-h dark schedule with lights on at 0900 h. All
procedures were performed according to guidelines from the
Canadian Council on Animal Care and approved by the McGill
University Animal Care Committee. Animals were mated with
males obtained from Charles River Canada (St. Constant, Qué-
bec, Canada) and singly housed 2 wk after mating. Maternal
behavior was observed for five 75-min periods per day for the
first 6 d postpartum at three periods during the light (1000, 1300,
and 1700 h) and two during the dark (0600 and 2100 h) phases
of the light/dark cycle. The behavior of each mother was scored
every 3 min (25 observations/period � 5 periods per day � 125
observations/mother/day) for the following behaviors: mother
off pups, mother carrying pup, mother LG any pup, and mother
nursing pups in an arched-back posture, a blanket posture in
which the mother lays over the pups, or a passive posture in
which the mother is lying either on her back or side while the pups
nurse (see Ref. 23 for a detailed description). Pup LG included
both anogenital and body licking. High LG mothers were defined
as females for which the mean frequency scores for LG over the
first 6 d postpartum were greater than 1 SD above the cohort
mean. Low LG mothers were defined as females for which the
mean frequency scores for LG over the first 6 d postpartum
greater than 1 SD below the cohort mean.

Fluorogold infusion
Primiparous female rats were precharacterized as high or low

LG mothers. Importantly, individual differences in pup LG are
highly stable across multiple litters (23). High and low LG moth-
ers reared pups to weaning and were then mated 2 wk later and

allowed to give birth. On postpartum d 3, dams were anesthe-
tized using ketamine/xylazine/acepromazine (0.1 ml per 100 g,
im). Animals were placed in a stereotaxic apparatus with the
incisor bar adjusted to maintain the skull horizontal between
bregma and �. Animals were infused with 1 �l of 4% fluorogold
(Sigma, St. Louis, MO), a retrograde tracer, into the VTA (24)
(coordinates: 4.8 mm posterior to bregma, 0.8 mm lateral to the
midline, and 8.0 mm ventral to the surface of the cortex) using
an infusion pump fitted with a 10-�l Hamilton syringe attached to
the stereotaxic arm. The infusion rate was 0.2 �l/min, and after the
completion of the infusion, the needle remained in place for 10 min.
The animals were allowed to recover under a heat lamp for 1 h
before being returned to their pups. Antibiotic powder (Cicatrin
GSK, Montréal, Canada) was applied to the site of incision and a
1-ml solution of 0.9% saline (sc) was given for fluid replacement.

Oxytocin and fluorogold immunocytochemistry
Brains were taken from perfused, postpartum d 6 dams, post-

fixed overnight, and then transferred to a 25% sucrose/PBS so-
lution for 2–4 d. Brains were sliced at 30 �M and stored in
cryoprotectant (pH 7.4) at �25 C. Free-floating sections were
transferred from Eppendorf tubes into wells and washed five
times in 0.9% PBS (pH 7.6) for 8 min for preparation for the
double-labeling immunocytochemistry (ICC). Sections were in-
cubated for 90 min in 1% hydrogen peroxide and 3% normal
goat serum in PBS at room temperature (RT) and then incubated
in 0.4% Triton X-100/PBS containing a monoclonal rabbit an-
ti-FG (antifluorogold) antibody for 24 h at RT (1:20,000,
AB153; Millipore, Billerica, MA). Sections were then rinsed
three times in PBS for 5 min and incubated for 2 h in PBS with 1%
normal goat serum containing a biotinylated secondary antibody
(goat antirabbit IgG, 1:200; Vector Laboratories, Burlingame,
CA). Sections were rinsed three times in PBS for 5 min and in-
cubated in the ABC reagent for 2 h at RT (ABC kit; Vector
Laboratories). The sections were removed from the ABC solu-
tion and rinsed three times in PBS for 5 min and visualized with
3,3�-diaminobenzidine (DAB) solution [DAB is a water-soluble
tetrahydrochloride used for permanent immunohistochemical
staining]. Sections were then rinsed five times in PBS for 5 min
and incubated for 60 min in 1% hydrogen peroxide and 3%
normal horse serum in PBS at RT. After blocking, sections were
incubated in mouse monoclonal antioxytocin antibody at RT
overnight (1:8000, MAB5296; Millipore). On the third day, sec-
tions were rinsed three times in PBS for 5 min and incubated for
2 h in PBS with 1% normal horse serum containing a biotinylated
secondary antibody (horse antimouse IgG, 1:200; Vector Lab-
oratories), followed by further rinses (three times in PBS for 5
min) and incubated in the ABC reagent for 2 h at RT (ABC kit;
Vector Laboratories). Finally, the sections were removed from
the ABC solution and rinsed three times in PBS for 5 min and
visualized with NOVA RED solution (Vector Laboratories). Sec-
tions were mounted on gelatin-coated slides, dehydrated, and
coverslipped. Counts of oxytocin and fluorogold-positive cells
(four to five sections/animal) were determined using a computer-
assisted densitometry program (MCID Systems; Imaging Re-
search, St. Catherine’s, Ontario, Canada).

Probe and guide cannula implantation
Lactating females were prepared for surgery 1–2 d after par-

turition. The animals were pretreated with atropine sulfate (0.1
mg/kg, ip) to reduce bronchial secretions, anesthetized with so-
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dium pentobarbital (60 mg/kg, ip), and placed in a stereotaxic
apparatus with the incisor bar adjusted to maintain the skull
horizontal between bregma and lambda. Electrochemical probes
were lowered into the nAcc shell (24) (coordinates: 1.2 mm an-
terior to bregma, 0.8 mm lateral to the midline, and 7.0 mm
ventral to the surface of the cortex). Animals were also implanted
with an Ag/AgCl reference electrode in the contralateral parietal
cortex. Miniature pin connectors soldered to the voltammetric
and reference electrodes were inserted into a Carleton connector
(Ginder Scientific, Ottawa, Ontario, Canada). Subsequent to the
probe placements, guide cannulae (10 mm long, 23 gauge; Plastic
One, Roanoke, VA) were lowered into the VTA (24) (coordi-
nates: 5.2 mm posterior to bregma, 0.8 mm lateral to the midline,
and 8.0 mm ventral to the surface of the cortex). The assembly
was secured with acrylic dental cement to four stainless steel
screws threaded into the cranium. Animals were returned to their
home cages after a 2.5-h recovery period and observed to be alert
and to engage in full maternal behavior toward pups (i.e. retrieve
pups and initiate a nursing bout).

In vivo electrochemical recordings

Electrochemical probes
The voltammetric electrodes consisted of a bundle of three

30-�m-diameter carbon fibers (Textron Systems, Wilmington,
MA) extending 50–100 �m beyond the sealed tip of a pulled-
glass capillary (outer diameter 0.5 mm), and repeatedly coated
with a 5% solution of Nafion (Aldrich, Milwaukee, WI), a per-
fluorinated ionomer that promotes the exchange of cations such
as dopamine but impedes the exchange of interfering anionic
species such as ascorbic acid (AA) and 3,4 dihydroxyphenylac-
etic acid. Each electrode was calibrated to determine dopamine
sensitivity and selectivity compared with AA in 0.1 M PBS (pH
7.4) that contained 250 �M AA to mimic brain extracellular
conditions. We used only electrodes with a highly linear response
(r � 0.997) to increasing concentrations of dopamine and a
nominal dopamine to AA selectivity ratio of greater than
1000:1. Electrodes used had a mean (�SEM) dopamine to AA
selectivity ratio of 1619:1 � 133:1. These Nafion-coated car-
bon fiber electrodes retain dopamine sensitivity and selectivity
for dopamine against both AA and 3,4-dihydroxyphenylac-
etic acid for several days after implantation (25).

Electrochemical measurements
Electrochemical recordings were performed using a com-

puter-controlled, high-speed chronoamperometric apparatus
(Quanteon, Lexington, KY). An oxidation potential of �0.55
mV (with respect to the reference electrode) was applied to the
electrode for 100 msec at a rate of 5 Hz. The oxidation current
was digitally integrated during the last 80 msec of each pulse. The
sums of every 10 digitized oxidative cycles of the chronoampero-
metric waveform were automatically converted into equivalent
values of dopamine concentration using the in vitro calibration
factor. The reduction current generated when the potential was
returned to resting level (0.0 V for 100 msec) was digitized and
summed in the same manner and served as an index to identify
the main electroactive species contributing to the electrochemi-
cal signals. With Nafion-coated electrodes and a sampling rate of
5 Hz, the magnitude of the increase in reduction current elicited
by an elevation in dopamine concentration is typically 60–80%
of the corresponding increase in oxidation current [reduction to

oxidation ratio (red:ox)], 0.6–0.8 (26–32). These studies also
indicate that the oxidation of AA is virtually irreversible (red:ox
0–0.1), whereas that of DOPAC is almost entirely reversible
(red:ox 1.0); the red:ox for norepinephrine and serotonin are
0.4–0.5 and 0.1–0.3, respectively.

Testing procedure
Electrochemical recordings began on postpartum d 4 and 5.

The in vitro calibration factor was entered in the data acquisition
software before recordings. Dams were placed in a sound-atten-
uating chamber containing bedding material and connected to
the chronoamperometric instrument by a shielded cable and a
low-impedance computator (Airflyte, Bayonne, NJ). A pream-
plifier configured as a current-to-voltage converter (gain, 1 �
108) was connected onto the head assembly to minimize electri-
cal interference. The pups were introduced into the recording
chamber with bedding from the home cage before the dams were
connected to the chronoamperometric instrument. Electrochem-
ical recordings were allowed to stabilize for 60 min before drug
infusions (see below). The monitoring of behavior began after a
5-min recovery period and continued for 1.5 h after the stabili-
zation period. The time of onset of each behavior, including an
LG bout, was recorded to associate ongoing maternal behavior
with the electrochemical signal. An LG bout was defined as a
continuous period of LG of at least 5 sec in duration (14, 19).

Electrochemical data
Because of the inherent variations in the sensitivity of Nafion-

coated electrodes, the changes in oxidation current recorded
with different electrodes (i.e. in different animals) cannot be as-
sumed to be equivalent. Thus, valid comparisons are possible
only if the sensitivity of each electrode is calibrated against a
standard and the electrochemical data are expressed as standard
equivalent values. The in vivo changes in oxidation current are
expressed as nanomoles equivalent values of dopamine concen-
tration. Data are presented as changes in electrochemical signal
(nanomoles dopamine equivalent) relative to the signal level after
stabilization. The electrochemical signal level at this time (base-
line) is 0 nM. A value of 0 nM is not the absolute concentration of
extracellular dopamine; rather, the electrochemical data reflect
relative changes in dopamine signal associated with bouts of pup
LG. Group comparisons are based on the peak dopamine signal
increases during each LG bout as well as the dopamine signal
amplitude taken at the onset of each bout of LG.

The similarity in the red:ox ration of norepinephrine and do-
pamine is inherent to electrochemical analyses. However, any
contribution of norepinephrine should be minor relative to that
of dopamine. The Nafion-coated carbon fiber electrodes used in
this study are five to 10 times less sensitive to norepinephrine
than to dopamine; thus, increases in extracellular norepineph-
rine in the order of 1–3 �M, typical only of K�-induced efflux
would be required to elicit increases in electrochemical signals
comparable with those we report for dopamine. Second, whereas
the nAcc shell is innervated by norepinephrine, the density of
norepinephrine terminals is considerably lower than that of do-
pamine. Third, LG-elicited increases in nAcc dopamine signals
are potentiated by selective DAT blockade (19), suggesting that
dopamine contributes significantly to the nAcc signal increases
reported here. Finally, given that the norepinephrine input to
nAcc shell originates primarily in the nucleus tractus solitarius
and that LG-elicited increases in nAcc electrochemical signals are
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blocked by intra-VTA application of OTA (see below) would
suggest that the relevant signal is that of dopamine.

Histology
Animals were deeply anesthetized with sodium pentobarbital

(75 mg/kg, ip) and transcardially perfused with 0.9% saline fol-
lowed by 10% formalin. The brains were stored in 10% formalin
and subsequently cryoprotected in a 30% sucrose-formalin solu-
tion. Electrode and cannulae placements were confirmed from 40
�m thionin-stained coronal sections using the atlas of Paxinos and
Watson (24). Only animals with electrodes and cannulae placed in
the nAcc and VTA, respectively, were included in the study.

Drug infusion into the VTA
A 1-�l Hamilton syringe attached to a polyethylene tube carry-

ing an infusion cannula was used for VTA infusions. On postpar-
tum d 4 lactating females were infused unilaterally with a 1-�l so-
lution of 0.25 �g/�l of the oxytocin antagonist [(�-mercapto-�,�
cyclopentamethylenepropionyl1, O-Me-Tyr2, Orn8)oxytocin;
OTA;Sigma;no.O6887]orwitha0.9%sterile saline solution.The
OTA concentration was based on previous studies examining the
effects of OTA infusions into the mPOA or VTA on sexual recep-
tivity (33) or maternal behavior (9) in the rat. Previous studies (9)
show a decrease in maternal behavior after a bilateral infusion of
OTA in the VTA using the same OTA concentration (2.4 nM). We
used a unilateral infusion of OTA into the VTA to limit the behav-
ioral effect and to permit recording of the dopamine signal from the
ipsilateral nAcc shell during periods of pup LG. This approach was
basedonpreviousstudies (34)showingthataunilateral lesionof the
VTA does not disrupt maternal behavior unless combined with a
lesionof thecontralateralmPOA.Forvirginfemales,a1-�l solution
containing 0.24 �g of oxytocin (oxytocin acetate salt hydrate or
�-hypophamine, no. O6379; Sigma) in sterile saline was infused
unilaterally into the VTA. Adult, nonlactating female rats were in-
fused with 1 �l of oxytocin (0.25 �g/�l) or 0.9% saline into the
VTA. This oxytocin concentration is similar to that used in studies
examining the effects of central oxytocin on maternal behavior in
the rat (11). All infusions were performed over a 3-min time period.
The interior of the polyethylene tube was coated with rat bovine
serum (Sigma) to minimize the adhesion of the peptide to the tube.
OxytocinandOTAinfusionswereperformedafter thestabilization
of the electrochemical recordings.

Statistical analysis
A two-tailed t test was performed for all ICC experiments. For

the infusion studies, a repeated-measures ANOVA with drug as
a between-subject factor and time as a within-subject factor was
used. Pair-wise comparisons were conducted with a Bonferroni
adjustment for multiple comparisons.

Results

Oxytocin projections from the mPOA to VTA
Sectionswereanalyzedfor fluorogoldstaining toexamine

differences in projections from the mPOA [specifically from
themedialpreopticnucleus(MPN)ofthemPOA]totheVTA
(Fig. 1A). Only animals in which the fluorogold injection site
was histologically confirmed to lie within the VTA were in-

cluded in thestudy (Fig.1H;n�5/group).Statisticalanalysis
revealed no significant differences between the two groups
[t (5) � 0.92, P � 0.40] in the number of fluorogold-pos-
itive cells in the MPN (Fig. 1, B and C).

Immunohistochemistry was performed to examine the
number of oxytocin-positive cells (n � 5/group). The results
revealed that high LG dams showed a significantly higher
number of oxytocin-immunoreactive cells in the MPN of
highcomparedwith lowLGmothers comparedwith lowLG
dams [(t (8) � 2.67, P � 0.05; and Fig. 1, D and E].

Sections from the same d 6 postpartum females were
double labeled for both oxytocin and fluorogold immuno-
reactivity (n � 5/group). Statistical analysis revealed a sig-
nificantly increased number of fluorogold-positive/oxytocin-
positive cells in the MPN from high compared with low LG
mothers [t (8) � 6.40, P � 0.001; see Fig. 1, F and G]. These
findings reveal an increased number of oxytocin-expressing
cells in the MPN with direct projections to the VTA in the
high compared with low LG mothers. This difference in the
number of oxytocin/fluorogold-labeled cells was primarily
due to a higher number of oxytocin neurons in the high LG
dams. In the MPN, the percentage of oxytocin neurons that
were fluorogold positive was comparable across the groups
(high � 37.9%; low � 35.0%). In addition, ODs were used
to distinguish between single-labeled (oxytocin positive) and
double-labeled (oxytocin/fluorogold positive) staining.

Oxytocin projections from the paraventricular
nucleus of the hypothalamus (PVNh) to VTA

Analysis of the ICC data for singly labeled oxytocin
cells revealed a significantly increased number of oxyto-
cin-positive cells in the parvocellular region of the PVNh
of high compared with low LG mothers [t (6) � 4.34, P �
0.05; Fig. 2A]. In contrast, we found no differences be-
tween high and low LG mothers in the number of oxyto-
cin-positive cells in the magnocellular region of the PVNh
on postpartum d 6 [t (6) � 0.42, P � 0.68; Fig. 2A]. The
number of oxytocin cells was also analyzed in the supraop-
tic nucleus of the hypothalamus. High LG mothers
showed a significant increase in the number of oxytocin-
positive cells compared with low LG mothers at postpar-
tum d 6 [t (8) � 2.48, P � 0.05; Fig. 2B].

A single-labeling ICC for fluorogold revealed no signifi-
cant difference between the number of fluorogold-positive
cells in the parvocellular region of the PVNh of high com-
pared with low LG mothers at d 6 postpartum [t (11) � 1.03,
P � 0.32; Fig. 2C]. Double-labeling ICC for oxytocin and
fluorogold showed a significantly greater number of oxy-
tocin-positive/fluorogold-positive cells in the parvocellu-
lar region of the PVNh of high compared with low LG
mothers on postpartum d 6 [t (9) � 2.85, P � 0.05; Fig. 2,
D and E]. These findings suggest that high LG dams have
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an increased number of oxytocin projections from the par-
vocellular region of the PVNh to the VTA compared with
low LG dams. The proportion of oxytocin-positive cells in
the PVNh that were fluorogold positive did not differ
across groups (high � 71.4%; low � 66.7%), suggesting
that the difference in the absolute values was due to an
increase in the number of oxytocin-positive cells in high
LG dams.

The effect of oxytocin on nAcc dopamine
transmission

These findings suggest an increased oxytocinergic pro-
jection from both the mPOA and the PVNh to the VTA in

high LG mothers. We then examined whether oxytocin
might act at the level of the VTA to alter the nAcc dopa-
mine signal and whether the activation of nAcc dopamine
signal during bouts of LG is mediated by oxytocin recep-
tors in the VTA.

Oxytocin infusion into the VTA increases the
dopamine signal in the nAcc

Weused in vivovoltametry to examine theacute effectsof
intra-VTA oxytocin infusions on dopamine signals recorded
in the nAcc shell. The results (Fig. 3, A and B) revealed an
increased dopamine signal in response to both saline and, to
a greater extent, the oxytocin infusion. Thus, a repeated-

FIG. 1. Photomicrograph outlining the boundaries of the MPN of the mPOA used for the quantification of ICC experiments (A). Mean � SEM

number of fluorogold-labeled cells in the MPN of lactating high or low LG mothers (n � 5/group) after injection in the VTA on postpartum d 6 (B).
Photomicrograph depicting cells that stained positively for fluorogold (FG) (C). Mean � SEM number of MPN cells positive for oxytocin (OT)
immunoreactivity in high or low LG mothers (*, P � 0.05) (D). Photomicrograph of oxytocin-positive cells in the MPN of high and low LG mothers
on postpartum d 6 (E). Mean � SEM number of oxytocin- and fluorogold-positive cells in the MPN of high or low LG mothers on postpartum d 6
(*, P � 0.001) (F). Photomicrograph of single- (positive for oxytocin but not fluorogold immunoreactivity) or double-labeled (positive for both
oxytocin and fluorogold immunoreactivity) cells. NOVA RED was used to visualize oxytocin immunoreactivity and DAB to visualize fluorogold
immunoreactivity (G). Schematic illustration of the sites of fluorogold infusions of the five high and five low LG dams. All animals included in the
analysis had confirmed infusion placement in the VTA (H).
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measures ANOVA revealed a significant main effect of treat-
ment [F (1, 6) �7.99;P�0.03]andtime[F (7, 42) �14.83;P�
0.0001]aswell asa significant treatment-by-time interaction
effect [F (7, 42) � 2.50; � 0.03]. Pair-wise post hoc compar-
isons confirmed that the increases in the dopamine signal in
oxytocin-treated animals were significantly greater than in
saline-treated animals at postinjection times 2–14, 18, and
22–24 min (all P values �0.05) but not at later time points,
reflecting the relatively short half-life for oxytocin (35). In
addition, the difference between the dopamine signal of the
oxytocin- and saline-treated animals is partially masked by
the acute stress of the infusion, which increases the extracel-
lular dopamine signal. An area under the curve analysis (Fig.
3B) taken fromt�0 (min) to t�24 (min) confirmed that the
increases in the dopamine signal in oxytocin-treated animals
were significantly greater than those seen in saline-treated
animals [t (6) � 2.81; P � 0.05].

We then examined whether the differences in the do-
pamine signal in the nAcc shell between high and low LG
mothers during periods of pup LG were associated with
oxytocin effects at the level of the VTA. Consistent with
previous findings (34), we found no effect of the unilateral
OTA infusion into the VTA on the frequency or duration
of pup LG (data not shown). Although the characteriza-
tion of high-low LG mothers relies on multiple observa-
tions per day performed over 6 consecutive days, such
differences were apparent, even during a single recording
period, the equivalent of a single period of observation. As

in our previous study (19), the duration of pup LG bouts
in high LG mothers was significantly (P � 0.05) longer
than that of low LG mothers. This finding is consistent

FIG. 3. The mean � SEM increase in dopamine (DA; nanomoles) in the
nucleus accumbens shell of virgin females after the infusion of saline
or oxytocin (2.4 nmol) into the VTA (n � 5/group). Infusion of oxytocin
increased the dopamine (nanomoles) signal at min 2–14, 18, 22, and
24 after infusion by comparison with saline-treated animals (*, P �
0.05) (A). Mean � SEM of total area under the curve (AUC) for
dopamine levels measured over the period depicted in A for virgin
females infused with oxytocin or saline (*, P � 0.05) (B). Repeated-
measures ANOVA was followed by a pair-wise post hoc test.

FIG. 2. Mean � SEM number of oxytocin-labeled cells (OT�) in the parvocellular and magnocellular regions of the paraventricular nucleus of the
hypothalamus PVNh (A) and in the supraoptic nucleus (SON; B) of lactating high and low LG mothers on postpartum day 6 (n � 5/group/*, P �
0.05). Mean � SEM number of fluorogold (FG�)-labeled cells in the parvocellular region of the PVNh (pPVNh) of high or low LG mothers on
postpartum d 6 (n � 5/group) (C). Mean � SEM number of oxytocin�/fluorogold� double-labeled cells in the parvocellular region of the PVNh of
high and low LG dams on post partum d 6 (n � 5/group, *, P � 0.05) (D). Photomicrograph outlining the magnocellular (MNCs) and parvocellular
(PVCs) regions of the PVNh used for the quantification of immunocytohistochemistry experiments. NOVA RED was used to visualize oxytocin
immunoreactivity and DAB to visualize fluorogold immunoreactivity (E).
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with previous reports (19, 23) showing that the differences
in pup LG are associated with differences in the duration
of individual LG bouts.

As previously described (19), increases in nAcc dopa-
mine signals were recorded during periods of pup LG and
the peak amplitude of such increases differed significantly
in high vs. low LG dams (Fig. 4, A–C). We found that the
difference in LG-related activation of nAcc dopamine

transmission was also associated with
a differential sensitivity to intra-VTA
blockade of oxytocin receptors with
OTA. A two-way ANOVA revealed a
main effect of treatment [F (1, 11) �
12.66; P � 0.01] such that an intra-
OTA infusions significantly attenuated
the peak nAcc dopamine responses as-
sociated with LG. Most importantly,
the analysis revealed a significant treat-
ment by maternal phenotype interac-
tion [F (1, 11) � 4.58; P � 0.05]. As ex-
pected from our previous studies (19),
post hoc analyses revealed that among
saline-treated animals, the peak LG-re-
lated nAcc increases in the dopamine
signal in the nAcc shell during a bout of
pup LG were significantly (P � 0.05;
Fig. 4A) greater in high LG than low LG
mothers. Importantly, intra-VTA OTA
infusions significantly attenuated LG-
related dopamine signal increases in
high LG mothers but had no effect on
the dopamine responses seen in low LG
mothers. Thus, OTA-treated high and
low LG animals showed comparable
LG-related increases in nAcc dopamine
signals. Interestingly, the mean increase
in the amplitude of the dopamine signal
in the nAcc of high LG mothers associ-
ated with pup LG (�400 nM) was com-
parable with that obtained in nonlac-
tating females rats (�300 nM) after
oxytocin infusion into the VTA.

Discussion

Variations in pup LG among lactating
rats is associated with differences in the
dopamine signal in the nAcc shell (19).
There isan increase in thenAccdopamine
signal that accompanies the onset of pup
LG and the termination of the increased
dopamine signal corresponds that of pup

LG. The magnitude of the increase in the dopamine signal in
the nAcc is strongly correlated to the duration of the pup
LG bout (19). The differences between high and low LG
mothers in the nAcc dopamine signal and in pup LG are
abolished by pretreatment with a dopamine reuptake
blocker (19). These findings are consistent with previ-
ous studies (18, 20, 21, 36, 37), revealing the impor-

FIG. 4. Mean � SEM peak increase in dopamine (DA; nanomoles) in the nAcc shell of high
and low LG lactating females on postpartum d 4 or 5 after infusion with either an oxytocin
antagonist (OTA) or saline in the VTA (n � 4–5/group). The saline-treated high LG mothers
showed a significantly higher dopamine signal (*, P � 0.05) compared with all other groups
(A). Representative recordings depicting the change in the dopamine (nanomoles) signal in
the nAcc shell of high and low LG mothers before, during, and at the end of a period of pup
LG on postpartum d 4/5 after infusion of an oxytocin antagonist (OTA) or saline into the VTA
(red dashed line represents baseline) (B). Schematic illustration of the sites of electrochemical
probe placement in the high and low LG dams included in the electrochemical and behavioral
analysis. All animals included in the analysis had confirmed probe placement in the nAcc shell
(n � 4–5/group) (C). Schematic illustration of the sites of cannulae placements in the high
and low LG dams included in the electrochemical and behavioral analysis. All animals
included in the analysis had confirmed cannulae placement in the VTAea (F, OTA; ‚, saline)
(D). A two-way ANOVA was used followed by Bonferroni’s post hoc test. Figure continued on
next page.

2282 Shahrokh et al. Oxytocin-Dopamine Interactions Mediate Maternal Behavior Endocrinology, May 2010, 151(5):2276–2286



tance dopamine activity in the nAcc for maternal be-
havior in the rat.

Differences between high and low LG mothers in me-
solimbic dopamine activity are associated with the effects of
oxytocinat the levelof theVTA.Individualdifferences inpup
LG among lactating females derive, in part, from alterations
in central oxytocin systems that regulate maternal behavior.
Thus, ICV infusions of OTA eliminate the differences in pup
LG between high and low LG mothers (13). We found in-
creasedoxytocinexpressionintheparvocellularregionofthe
PVNh of high compared with low LG mothers; the PVNh
projects to the mPOA and VTA (38). There were no such
differences in the magnocellular neurons that project to the
neurohypophysis and regulate milk ejection. Oxytocin com-
monly acts at oxytocin receptors to increase the firing rate of
oxytocin neurons and enhance oxytocin synthesis (i.e. a pos-
itive feedback effect) (39–41). Lactating high LG mothers
showincreasedoxytocin receptorbinding in themPOA,sug-
gesting greater sensitivity to oxytocin (12, 13, 15). Increased
oxytocin receptor binding in the mPOA of high LG mothers
(12, 13) combined with a positive feedback effect on oxyto-
cin expression is consistent with the finding of an increased
oxytocin expression in the mPOA of high compared with the
low LG mothers.

Numan and colleagues (34, 42) described the impor-
tance of mPOA projections to the VTA for maternal be-

havior in the rat. Thus, unilateral mPOA lesions combined
with lesions of the contralateral VTA impairs maternal
behavior (16), as do bilateral OTA infusions into the VTA
(9). The tract-tracing study suggests direct projections
from oxytocin-positive cells in the mPOA to the VTA as a
mechanism for a direct effect of oxytocin on dopamine
release from VTA neurons. The results also revealed in-
creased oxytocin projections in high LG mothers (Fig. 1),
consistent with the increased oxytocin expression in the
mPOA. Whereas these findings focus on the importance of
mPOA-VTA projections, it is worth noting an alternative
pathway that includes the lateral preoptic area, with sub-
sequent projections to the VTA (43). There was also an
increased number of oxytocin-positive cells in the PVNh
with projections to the VTA in high compared with low
LG mothers.

Infusion of oxytocin directly into the VTA enhanced
the dopamine signal in the nAcc shell (also see Ref. 44),
suggesting an effect of oxytocin on the dopamine neurons
of the VTA. We replicated previous studies showing an
increased dopamine signal in the nAcc during periods of
pup LG in high compared with low LG mothers (19) and
showed that this difference was abolished with an intra-
VTA infusion of an oxytocin receptor antagonist (Fig.
4A). These findings suggest that under normal conditions
the increased dopamine signal in the nAcc of the high LG

FIG. 4. Continued.
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mothers is oxytocin dependent. Note, however, that these
findings do not necessarily imply a direct effect of oxytocin
on dopamine neurons, nor can we exclude the possibility
of diffusion from the VTA as a complication.

The oxytocin receptor is expressed in the rat VTA (16)
and is a class I G protein-coupled receptor that is primarily
coupled via Gq proteins to phospholipase C (45, 46)
with the capacity to regulate calcium-mediated neuro-
nal events, such as dopamine release. The present findings
are also consistent with those showing oxytocin enhanced
psychostimulant-induced sensitization (47); such effects
are commonly mediated by the activation of the dopamine
neurons in the VTA (48). Our findings are also consistent
with reports of oxytocin-dopamine interactions in the reg-
ulation of social behavior. Thus, an interaction between
oxytocin and mesocorticolimbic dopamine systems is im-
plicated in the maintenance of social bonds (e.g. Refs. 49–
53). The dopamine signal in the nAcc might mediate an
increased expression of appetitive behaviors directed to-
ward pups (22, 54). Such maternally initiated (or active)
behaviors would include pup LG, and likely pup retrieval,
which is also subject to disruption by manipulations that
target oxytocin-dopamine pathways (22). The mesocor-
ticolimbic dopamine system modulates behavioral re-
sponses to incentive stimuli through projections from the
VTA to the nAcc (48, 55–59). Pups hold remarkable sa-
lience for the lactating female rat and postpartum females
bar-press vigorously for access to neonates, a behavior
that is abolished by lesions to the mPOA abolish such
responses (60). Suckling pups are more reinforcing for
lactating rats than is cocaine or food (61, 62).

Dopamine levels in the nAcc shell are increased during
a nursing bout (18) and 6-hydroxydopamine lesions of
either the VTA or nAcc severely disrupt maternal behavior
(36, 37). Microinjection of mixed dopamine type 1/type 2
receptor antagonists into the nAcc shell impairs maternal
behavior, including pup LG (20, 21). Activation of the D1
receptor increases FOS expression; maternal contact with
pups increases FOS expression in the nAcc (17, 63). Our
findings suggest that individual differences in maternal
behavior associate with variations in the activity of the
mesolimbic dopamine system during periods of mother-
pup interactions. Thus, Champagne et al. (19) found that
infusion of a dopamine reuptake blocker enhanced the
dopamine signal in the low LG mothers to that observed
in high LG dams and completely eliminated the group
differences in pup LG (19). Febo et al. (64) used functional
magnetic imaging and showed that suckling from pups
increases the BOLD signal in the VTA and nAcc. These
effects were reduced with OTA infusion. Likewise func-
tional magnetic imaging studies (65, 66, and Popeski N.,
C. Scherling, A. S. Fleming, J. Lydon, J. C. Pruessner, M.

J. Meaney, submitted for publication) with human moth-
ers revealed that activity along dopamine sensitive path-
ways, including the nAcc, is associated with individual
differences in maternal responsivity; increased activity
within these systems predicts greater responsivity to in-
fant-related stimuli. Thus, studies across a range of species
suggest that individual differences in maternal behaviors
derive from variation within mesolimbic oxytocin-dopa-
mine systems.
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